

1 www.wilke.de - +49.2405.408 55-0

Index

Manual Addendum

Tiger

2 www.wilke.de - +49.2405.408 55-0

Index

Blank Page

3 www.wilke.de - +49.2405.408 55-0

Index

Index
Index 3

Installation 5

Development environment 6

Tiger module 8

String length 8

Tiger-BASIC Preprocessor Instructions 9

#define TIGER_PLUS 9

Tiger-BASIC Compiler Instructions 10

USER_FREQUENCY 10
DATA 10

Updated functions 11

SYSVARN 11
READ_T_CODE$ 14

New functions 15

READ_BACKUP_RAM 15
WRITE_BACKUP_RAM 20
OTYPE_PIN 22
OTYPE_PORT 24
PU_PD_PIN 26
PU_PD_PORT 27
ERASE_FLASH_SECTOR 29

Device drivers 31

SER1B – serial interfaces 32
RTC1.TDP 34
ANALOG1.TDP 37
ANALOG2.TDP 42
CAN-Bus 50

Documentation History 110

4 www.wilke.de - +49.2405.408 55-0

Index

Blank Page

5 www.wilke.de - +49.2405.408 55-0

Installation

Installation
In order to work with Tiger plus using an existing compiler-version 5.4, several

new files are required, please copy them into particular directories of your existing
Tiger-BASIC installation. This concerns the following files:

file name(s): file type: copy to:
Tgbas32.exe new compiler-version ..\Bin
*.TDP Device drivers for Tiger plus ..\Bin
Tac0000.TAP System file for Tiger plus ..\Bin
Tac0000_.TAP System file for Tiger plus ..\Bin
Tac0100.TAP System file for Tiger plus ..\Bin
Tac0100_.TAP System file for Tiger plus ..\Bin
Tac0200.TAP System file for Tiger plus ..\Bin
Tac0200_.TAP System file for Tiger plus ..\Bin
Tac0300.TAP System file for Tiger plus ..\Bin
Tac0300_.TAP System file for Tiger plus ..\Bin
Tac0400.TAP System file for Tiger plus ..\Bin
Tac0400_.TAP System file for Tiger plus ..\Bin
Thinfo0.THP System file for Tiger plus ..\Bin
Define_a.INC general symbol-definitions ..\Include
Ufunc4.INC definitions user-function-codes ..\Include

6 www.wilke.de - +49.2405.408 55-0

Development environment

Development environment
Please consider the following in the Tiger-BASIC IDE when employing Tiger plus:

• The interface-settings, to be found in the Options / Communication
menu, are to be adjusted so that the baud rate is 115,200 and parity is
set to “none”. Just press the “Tiger plus” button to activate this setting.
The Tiger module also supports the fast download (312500 Bd)
and the ultra-fast download (625000 Bd) option.

7 www.wilke.de - +49.2405.408 55-0

Development environment

• The Tiger plus module will be recognized by its development
environment automatically. If a program has to be compiled for the Tiger
plus, without a module being connected, the module type has to be set
to “Tiger plus” in the menu Options / Compiler.

8 www.wilke.de - +49.2405.408 55-0

Tiger plus module

Tiger module

Hardware

Aside from the very small basic differences between the classical Tiny-Tiger and
the new Tiny Tiger plus such as the additional rows of pins, there are differences in
certain pins, which have obviously not changed in their function when compared to
the Tiny-Tiger. However, the differences are the following:

• In the Tiger plus, the pins L33..L37, L60..L67, L70..L73, L80..L87, as well

as L90..L95 have a voltage range of 0 to 3.3 V as outputs and an input
voltage range of 0 to 5 V. As digital inputs the I/O are 5V tolerant.

Software

A further change in the Tiger plus concerns the software, viz. the file type STRING:
Theoretically, strings with a length of up to 2 GB can be processed. In practice,
therefore, the length of a string is only restricted by the size of the module’s RAM.

String length

In the Tiger plus, the maximum length of a string is no longer restricted (only by the
RAM). Therefore, even more data can be put into a string. This is to be taken with a
grain of salt, though, since the duration of the operations increases correspondingly
for very large strings. Very large strings can also influence the timing of the multi-
tasking system, since one BASIC instruction is always completed before switching to
the next task.

This has also influence to the DATA instruction. For further information, please refer to
page 10.

9 www.wilke.de - +49.2405.408 55-0

Tiger-BASIC Preprocessor Instructions

Tiger-BASIC Preprocessor Instructions

#define TIGER_PLUS

#define TIGER_PLUS

Function: The symbolic constants "TIGER_1", "TIGER_2" and "TIGER_PLUS" are

automatically generated by the compiler and can be applied for
managing the module-dependent branches of the source code.
Creating these defines in your code may result in unwanted effects
running your program and should thus be avoided.

Example for installing serial driver with different baud rates using Tiger plus:

#ifdef TIGER_PLUS

 INSTALL_DEVICE #SER, "SER1B_K1.TDP", &

 BD_115_200, DP_8N, JA, & ' settings for SER0

 BD_115_200, DP_8N, JA ' settings for SER1

#else

 INSTALL_DEVICE #SER, "SER1B_K1.TDD", &

 BD_38_400, DP_8N, JA, & ' settings for SER0

 BD_38_400, DP_8N, JA ' settings for SER1

#endif

10 www.wilke.de - +49.2405.408 55-0

Tiger-BASIC Compiler Instructions

Tiger-BASIC Compiler Instructions

USER_FREQUENCY

USER_FREQUENCY SPEED_100

Function: The Tiger plus CPU speed is adjusted with USER_FREQUENCY. Without

this instruction, the default speed is SPEED_25. You are free to
increase or decrease the CPU speed and adapt it to your
application. Please refer the Tiger plus datasheet for typ. power
consumption.

Options for USER_FREQUENCY:

No Symbol Description

1 SPEED_25 25% Speed (default)

2 SPEED_50 50% Speed

4 SPEED_100 100% Speed (Full Speed)

DATA

DATA Type Constlist

Function: Initializes a data field in the Flash-memory.

Parameters:
 B W L S F
Type ⚫ ⚫ ⚫ - - determines the type of data BYTE, WORD, LONG,

REAL, STRING, FILTER, or FILE and determines the
values to be saved.

Constlist ⚫ ⚫ ⚫ - - is a list of constants of the type BYTE, WORD,

LONG, STRING, or FILE and determines the values
to be saved.

There is one difference to the Tiger-1, because of the new string length. Character
strings are saved with details of their length, e.g.:
 "Hello" -> 05 00 00 00 'H' 'e' 'l' 'l' 'o'; a total of 9 bytes.

11 www.wilke.de - +49.2405.408 55-0

Updated functions

Updated functions

SYSVARN

RES = SYSVARN (FunctionNo, Parameter2)

Returns the Value of a LONG system variable. Numeric type system variables, other
than real, are tested with this function. The test can also trigger system functions.

Parameters:
 B W L S F
FunctionNo ⚫ ⚫ ⚫ - - is a variable, constant or expression of the type

BYTE, WORD, LONG and is the number of the
inquiry.

Parameter2 ⚫ ⚫ ⚫ - - can have various meanings or is sometimes a

random number (Dummy).

 Function value:

RES - - ⚫ - - is of the type LONG. An automatic type

conversion takes place during the assignment.

The function numbers are assigned names in the Include file DEFINE_A.INC; these
can be found in the table below.

Include the file ‘DEFINE_A.INC’ to use symbols, as function numbers may change

in future developments of Tiger BASIC®. New and updated Functions of SYSVARN:

Symbol No 2nd parameter Description

FLASH_SIZE <33> Dummy Size of Program-Flash in bytes

FLASH_SEC <34> Dummy Number of sectors in Program-Flash

FLASH_SSIZE <35> Dummy Flash sector size

FLASH_ASEC <36> Dummy Number of Flash sectors

FLASH_GSIZE <37> Dummy Size of Flash memory in bytes

FLASH_DSEC <38> Dummy Number of Flash sectors for User-Data

FLASH_DSIZE <39> Dummy Size of Flash memory in bytes for User-
Data

12 www.wilke.de - +49.2405.408 55-0

Updated functions

Symbol No 2nd parameter Description

FLASH_DMODE <40> Dummy 0=system waits during Flash operations
1=system continues to run during Flash
operations

PFLASH_DSIZE <41> Dummy Size of Flash memory in bytes for User-
Data inside the Program Flash

DFLASH_SIZE <42> Dummy Size of Data-Flash in bytes

FLASH_BUSY <43> Dummy Busy flag for usage with
ERASE_FLASH_SECTOR function
1 = busy
0 = not busy

BACKUP_RAM_SIZE <53> Dummy Size of Backup RAM memory in bytes

TIGER_MODULE <69> Dummy Tiger module Type:
003H = module family E3V
083H = module family TINY-Tiger
084H = module family TINY-Tiger 2
092H = module family ECONO-Tiger plus
093H = module family TINY-Tiger plus
094H = module family TINY-Tiger 2 plus
09AH = module family BASIC-Tiger plus
0AAH = module family A (BASIC-Tiger)

13 www.wilke.de - +49.2405.408 55-0

Updated functions

Program examples:

'---

' Name: SYSVARN_FLASH.TIG

'---

USER_VAR_STRICT

#INCLUDE DEFINE_A.INC ' include global definitions

TASK MAIN ' begin task MAIN

' install LCD-driver (BASIC-Tiger)

 INSTALL DEVICE #LCD, "LCD1.TDD"

' install LCD-driver (TINY-Tiger)

' INSTALL DEVICE #1, "LCD1.TDD", 0, 0, 0, 0, 0, 0, 80h, 8

 PRINT #LCD, "<1>Flash size:"; SYSVARN (FLASH_GSIZE, -1)/1024; "K"

 PRINT #LCD, "Data-F.:"; SYSVARN (DFLASH_SIZE, -1)/1024; "K"

 PRINT #LCD, "Prog-F.:"; SYSVARN (FLASH_SIZE, -1)/1024; "K"

 PRINT #LCD, "Prog-F. U-Dat:"; SYSVARN (PFLASH_DSIZE, -1)/1024; "K";

END

'---

' Name: SYSVARN_MODULE_TYPE.TIG

'---

TASK MAIN ' begin task MAIN

' install LCD-driver (BASIC-Tiger)

 INSTALL DEVICE #LCD, "LCD1.TDD"

 PRINT #LCD, "<1>Module type:"; SYSVARN (TIGER_MODULE, -1)

 switch SYSVARN (TIGER_MODULE, -1)

 case 003H:

 PRINT #LCD, "E3V"

 case 083H:

 PRINT #LCD, "TINY-Tiger"

 case 084H:

 PRINT #LCD, "TINY-Tiger 2"

 case 092H:

 PRINT #LCD, "ECONO-Tiger plus"

 case 093H:

 PRINT #LCD, "TINY-Tiger plus"

 case 094H:

 PRINT #LCD, "TINY-Tiger 2 plus"

 case 09AH:

 PRINT #LCD, "BASIC-Tiger plus"

 case 0AAH:

 PRINT #LCD, "BASIC-Tiger"

 endswitch

END

14 www.wilke.de - +49.2405.408 55-0

Updated functions

READ_T_CODE$

RES$ = READ_T_CODE$(Option)

Reads out the unique serial number (T-Code) of a Tiger plus module.

Parameters:
 B W L S F
Option ⚫ ⚫ ⚫ - - is a variable, constant or expression of the type

BYTE, WORD, LONG and is the number of the
inquiry.
 0: T-Code / serial number (12 bytes)
 1: software version (6 bytes)
 2-4: dummy (each 5 bytes)
128: complete String (all 128 bytes)

 Function value:

RES$ - - - ⚫ - is of the type STRING. Contains the requested

information.

The T-Code will be unique for all Tiger plus modules but might have overlaps with
the Tiny Tiger 2 T-Codes. An additional check of the module type is recommended.

While Tiny Tiger 2 had 5 bytes for the software version, Tiger plus modules use 6
bytes and the Tiger plus will return only zeros for parameters 2 to 4. Therefore, reading
all 128 bytes will result in: [12 bytes T-Code] [6 bytes software version] [110 zeros]

Program example:

'---

' Name: Read_T_Code.tig

'---

task main

 string read$(128)

 #ifdef TIGER_PLUS

 read$ = read_t_code$(0) ' T-Code / serial number

 read$ = read_t_code$(1) ' Software version

 read$ = read_t_code$(128) ' complete string (all 128 Bytes)

 #endif

end

15 www.wilke.de - +49.2405.408 55-0

New functions

New functions

READ_BACKUP_RAM

RES = READ_BACKUP_RAM$ (Address, Number, Success_code)
RES = READN_BACKUP_RAM (Address, Number, Success_code)
RES = READR_BACKUP_RAM (Address, Number, Success_code)

This function reads a group of bytes from the backup RAM memory location given by
Address into RES. The number of bytes within the group read from backup RAM is
given by the value Number.

Parameters:
 B W L S F
Address ⚫ ⚫ ⚫ - - Is a variable, constant or expression of the type

BYTE, WORD or LONG and specifies the starting
address in the backup RAM from where the bytes
are to be read.

Number ⚫ ⚫ ⚫ - - Is a variable, constant or expression of the type

BYTE, WORD or LONG and specifies the number
of bytes to be read. The number of bytes that the
variable can accept is also the maximum number
of bytes that can be read.

Success_code - - ⚫ - - Output: is a variable of the type LONG and

returns the result of the function as follows:
0 = OK. Bytes were read as intended.
-1 = Warning: Number limited to maximum size
of RES.
-2 = Warning: reached end of backup RAM
memory.
-4 = Warning: address out of backup RAM area.
-17 = Warning: READ_BACKUP_RAM functions
are not supported in this Tiger module.

 Function value:

RES ⚫ ⚫ ⚫ ⚫ ⚫ Is of type BYTE, WORD, LONG, REAL or STRING

and contains the bytes read from backup RAM.

String:
Byte/Word/Long:

Real:

16 www.wilke.de - +49.2405.408 55-0

New functions

READ_BACKUP_RAM functions are supported as of module version 3.10m! The

module version can be inquired at runtime with the function SYSVARN or via the
command View->Tiger-Status in the TIGER-Basic IDE.

The backup RAM is powered from Batt. Input voltage, when the main Vcc supply is

powered off. To retain the content of the backup RAM when Vcc is turned off, Batt. input
pin needs to be connected to an optional standby voltage supplied by a battery or by
another source. It can be considered as an internal EEPROM with unlimited erase cycles
when Batt. input is always present.

When the Tiger is supplied by Vcc, the backup RAM is powered from Vcc which
replaces the Batt. input power supply to save battery life.

Typically, the size of the backup RAM is 2 Kbyte. To read out the real size of the
backup RAM of your module, please use the SYSVARN function:

RAM_SIZE = SYSVARN(BACKUP_RAM_SIZE, 0) 'get the size of Backup RAM

Program example:

'---

'Name: READ_BACKUP_RAM$1.TIG

'---

user_var_strict

#include define_a.inc ' include global definitions

#include ufunc4.inc ' include global definitions

task main ' begin task MAIN

 long llResult ' error/sucess code

 string slBackupRam$ ' result of READ_BACKUP_RAM

 install_device #LCD, "lcd1.tdd" ' install LCD-driver

 ' write "Hello World!" to backup RAM

 llResult = WRITE_BACKUP_RAM(0, "Hello World!", 0, 12)

 ' read from backup RAM

 slBackupRam$ = READ_BACKUP_RAM$(0, 12, llResult)

 print #LCD, "<1>BACKUP_RAM:" ' print result

 print #LCD, slBackupRam$ ' to LCD

end

!

17 www.wilke.de - +49.2405.408 55-0

New functions

Please ensure there was no power down before reading out the backup RAM
contents, in the case of power down, these contents are lost. The easiest way is to use
the RTC device driver. The RTC uses the same Batt. Input as the backup RAM. There is

18 www.wilke.de - +49.2405.408 55-0

New functions

a User-function-code to read out the voltage low detection. It is recommended to use
an additional magic number to validate the backup RAM content.

'---

'Name: READ_BACKUP_RAM$2.TIG

'---

user_var_strict

#include define_a.inc ' include global definitions

#include ufunc4.inc ' include global definitions

#define MAGIC_NUMBER 0DEADBEEFH ' Magic number (validate backup RAM)

task main ' begin task MAIN

 long llResult ' error/sucess code

 string slBackupRam$ ' result of READ_BACKUP_RAM

 long llVoltage ' voltage down flag from RTC

 long llRTCstat ' status of RTC

 long llMagicNumber ' Magic number

 install_device #LCD, "lcd1.tdd" ' install LCD-driver

 install_device #RTC, "rtc1.tdd" ' install RTC-driver

 print #1,"<1>installing RTC"; '

 llRTCstat = RTC_INITIAL '

 while llRTCstat < RTC_NO_RTC ' while searching for RTC

 get #RTC, #0, #UFCI_RTC_STAT0, 1, llRTCstat ' get status of RTC

 wait_duration 200 '

 endwhile

 if llRTCstat = RTC_PRESENT then ' if RTC found

 ' read out magic number from backup RAM

 llMagicNumber = READN_BACKUP_RAM(0, 4, llResult)

 get #RTC, #0, #UFCI_RTC_VOLTAGE, 0, llVoltage ' get Voltage Low

 if llVoltage = RTC_VOLTAGE_LOW OR & ' was power down?

 llMagicNumber <> MAGIC_NUMBER then ' wrong magicnumber?

 put #RTC, 0 ' start RTC

 print #LCD, "<1>Save String to" '

 print #LCD, "backup RAM..." '

 ' write "Hello World!" to backup RAM

 llResult = WRITE_BACKUP_RAM(4, "Hello World!", 0, 12)

 if llResult = 0 then ' check success code

 ' write magic number to validate content of backup RAM

 llResult = WRITE_BACKUP_RAM(0, MAGIC_NUMBER, 0, 4)

 if llResult = 0 then ' check success code

 wait_duration 1000 ' wait 1 second

 restart_prog() ' reset Tiger

 else

 print #LCD, "<1>Error:"; llResult ' print error number

 endif

 else '

 print #LCD, "<1>Error:"; llResult ' print error number

 endif

 else '

 slBackupRam$ = READ_BACKUP_RAM$(4, 12, llResult) ' read backup RAM

 if llResult = 0 then ' check success code

 print #LCD, "<1>BACKUP_RAM:" ' print result

 print #LCD, slBackupRam$ ' to LCD

 else '

 print #LCD, "<1>Error:"; llResult ' print error number

19 www.wilke.de - +49.2405.408 55-0

New functions

 endif '

 endif '

 endif '

end ' end task MAIN

See also: WRITE_BACKUP_RAM

20 www.wilke.de - +49.2405.408 55-0

New functions

WRITE_BACKUP_RAM

RES = WRITE_BACKUP_RAM (Dst_Address, Source, Src_Offset, Number)

This function writes Number bytes from Source with Src_Offset to Dst_Address in the
backup RAM.

Parameters:
 B W L S F
Dst_Address ⚫ ⚫ ⚫ - - Is a variable, constant or expression of the type

BYTE, WORD or LONG and specifies the starting
address in the backup RAM from where the bytes
are to be written.

Source ⚫ ⚫ ⚫ ⚫ ⚫ Is a variable, constant or expression of the type

BYTE, WORD, LONG, REAL or STRING and
specifies the data to write to the backup RAM.

Src_Offset ⚫ ⚫ ⚫ - - Is a variable, constant or expression of the type

BYTE, WORD or LONG and specifies the start
position in Source to write from. With numeric
values, Src_Offset 0 means the lowest byte. With
a data type STRING Src_Offset 0 is the first byte
in the string.

Number ⚫ ⚫ ⚫ - - Is a variable, constant or expression of the type

BYTE, WORD or LONG and specifies the number
of bytes to be written. The number of bytes is
limited through the length of Source and the
length of the backup RAM.

 Function value:

RES - - ⚫ - - Is a variable of the type LONG and returns the

result of the function as follows:
0 = OK. Bytes were written as intended.
-1 = Warning: not enough bytes in Source
variable. Number limited to length of Source.
-2 = Warning: reached end of backup RAM
memory.
-3 = Warning: no Source bytes.
-4 = Warning: address out of backup RAM area.
-17 = Warning: WRITE_BACKUP_RAM not
supported in this Tiger module

21 www.wilke.de - +49.2405.408 55-0

New functions

WRITE_BACKUP_RAM is supported as of module version 3.10m! The module

version can be inquired at runtime with the function SYSVARN or via the command
View->Tiger-Status in the TIGER-Basic IDE.

For a detailed description of the backup RAM please refer to READ_BACKUP_RAM.

Program example:

'---

'Name: WRITE_BACKUP_RAM.TIG

'---

user_var_strict

#include define_a.inc ' include global definitions

#include ufunc4.inc ' include global definitions

task main ' begin task MAIN

 long llResult ' error/sucess code

 string slBackupRam$ ' result of WRITE_BACKUP_RAM(String)

 long llBackupRam ' result of WRITE_BACKUP_RAM(Long)

 real rlBackupRam ' result of WRITE_BACKUP_RAM(Real)

 install_device #LCD, "lcd1.tdd" ' install LCD-driver

 llResult = WRITE_BACKUP_RAM(0, "Hello World!", 0, 12) ' write String

 llResult = WRITE_BACKUP_RAM(12, 123, 0, 4) ' write 123 to backup RAM

 llResult = WRITE_BACKUP_RAM(16, 1.23, 0, 8) ' write 1.23 to backup RAM

 slBackupRam$ = READ_BACKUP_RAM$(0, 12, llResult) ' read String

 llBackupRam = READN_BACKUP_RAM(12, 4, llResult) ' read Long

 rlBackupRam = READR_BACKUP_RAM(16, 8, llResult) ' read Real

 print #LCD, "<1>BACKUP_RAM:" ' print result to LCD

 print #LCD, slBackupRam$ ' String

 print #LCD, llBackupRam ' Long

 print #LCD, rlBackupRam ' Real

end ' end task MAIN

See also: READ_BACKUP_RAM

!

22 www.wilke.de - +49.2405.408 55-0

New functions

OTYPE_PIN

OTYPE_PIN Log_Portadr., Bitposition , Output_Type

Configures the output type of an individual pin within a bit-oriented internal I/O port.

Parameters:
 B W L S F
Log_Portadr ⚫ ⚫ ⚫ - - is a variable, constant or expression of the type

BYTE, WORD or LONG and specifies the logical
port address.

Bitposition ⚫ ⚫ ⚫ - - is a variable, constant or expression of the type

BYTE, WORD or LONG and specifies the position
of the bit.
For Bitposition > 7 the complete port is set.

Output_Type ⚫ ⚫ ⚫ - - is a variable, constant or expression of the type

BYTE, WORD or LONG and specifies the output
type of the I/O line.

Output_Type I/O-Pin

0 Push pull (reset state)

1 Open-drain

23 www.wilke.de - +49.2405.408 55-0

New functions

Program example:

'---

' Name: OTYPE_PIN.TIG

'---

TASK MAIN 'begin task MAIN

 OTYPE_PIN 8, 7, 1 'Set bit 7 as open-drain

 DIR_PIN 8, 7, 0 'port 8, bit 7 is output

 LOOP 9999999 'many loops

 OUT 8,10000000b, 128 'set port 8, bit 7 open-drain high

 WAIT_DURATION 500 'wait 500 ms

 OUT 8,10000000b, 0 'set port 8, bit 7 open-drain low

 WAIT_DURATION 500 'wait 500 ms

 ENDLOOP

END 'end task MAIN

See also: OTYPE_PORT

24 www.wilke.de - +49.2405.408 55-0

New functions

OTYPE_PORT

OTYPE_PORT Log_Portadr., Output_Type

Configures the output type of all pins of an internal I/O port.

Parameters:
 B W L S F
Log_Portadr ⚫ ⚫ ⚫ - - is a variable, constant or expression of the type

BYTE, WORD or LONG and specifies the logical
port address.

Output_Type ⚫ ⚫ ⚫ - - is a variable, constant or expression of the type

BYTE, WORD or LONG and specifies the output
type of the I/O lines bitwise.

Output_Type I/O-Portbit

0 Push pull (reset state)

1 Open-drain

The instruction

OTYPE_PORT 8, 1

sets pin 0 to open drain and all other pins to push pull:

OTYPE_PORT 8, 1

L87 L86 L85 L84 L83 L82 L81 L80

push
pull

push
pull

push
pull

push
pull

push
pull

push
pull

push
pull

Open
drain

25 www.wilke.de - +49.2405.408 55-0

New functions

Program example:

'---

' Name: OTYPE_PORT.TIG

'---

TASK MAIN 'begin task MAIN

 OTYPE_PORT 8, 255 'Port 8 is open-drain

 DIR_PORT 8, 0 'Set Port 8 as output

 OUT 8, 255, 01010101b 'set all even bits open drain high

END 'end task MAIN

See also: OTYPE_PIN

26 www.wilke.de - +49.2405.408 55-0

New functions

PU_PD_PIN

PU_PD_PIN Log_Portadr., Bitposition , PullUp_PullDown

Configures the pull-up or pull-down of an individual pin within a bit-oriented internal
I/O port.

Parameters:
 B W L S F
Log_Portadr ⚫ ⚫ ⚫ - - is a variable, constant or expression of the type

BYTE, WORD or LONG and specifies the logical
port address.

Bitposition ⚫ ⚫ ⚫ - - is a variable, constant or expression of the type

BYTE, WORD or LONG and specifies the position
of the bit.
For Bitposition > 7 the complete port is set.

PullUp_PullDown ⚫ ⚫ ⚫ - - is a variable, constant or expression of the type

BYTE, WORD or LONG and specifies the pull-up or
pull-down of the I/O line.

PullUp_PullDown I/O-Pin

0 No pull-up, pull-down

1 Pull-up

2 Pull-down

Program example:

'---

' Name: PU_PD_PIN.TIG

'---

TASK MAIN 'begin task MAIN

 PU_PD_PIN 8, 0, 0 'No pull-up or pull-down on L80

END 'end task MAIN

See also: PU_PD_PORT

27 www.wilke.de - +49.2405.408 55-0

New functions

PU_PD_PORT

OTYPE_PORT Log_Portadr., PullUp_PullDown

Configures the pull-up or pull-down of all pins of an internal I/O port.

Parameters:
 B W L S F
Log_Portadr ⚫ ⚫ ⚫ - - is a variable, constant or expression of the type

BYTE, WORD or LONG and specifies the logical
port address.

PullUp_PullDown ⚫ ⚫ ⚫ - - is a variable, constant or expression of the type

BYTE, WORD or LONG and specifies the pull-up or
pull-down of the I/O lines bitwise as 16-bit
value.

PullUp_PullDown I/O-Portbit

0 / 00b No pull-up, pull-down

1 / 01b Pull-up

2 / 10b Pull-down

Pull-up pull-down 16-bit value
Pin 7 6 5 4 3 2 1 0
Bit-No. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The instruction

PU_PD_PORT 8, 024H

sets pin1to pull-up, pin 2 to pull-down and all other pins to no pull-up, pull down

PU_PD_PORT 8, 024H

L87 L86 L85 L84 L83 L82 L81 L80

No
 pull-up,

pull-down

No
 pull-up,

pull-down

No
 pull-up,

pull-down

No
 pull-up,

pull-down

No
 pull-up,

pull-down

Pull-down Pull-up No
 pull-up,

pull-down

28 www.wilke.de - +49.2405.408 55-0

New functions

Program example:

'---

' Name: PU_PD_PORT.TIG

'---

TASK MAIN 'begin task MAIN

 PU_PD_PORT 8, 0000000000000000b 'No pull-up or pull-down on port 8

END 'end task MAIN

See also: PU_PD_PIN

29 www.wilke.de - +49.2405.408 55-0

New functions

ERASE_FLASH_SECTOR

ERASE_FLASH_SECTOR Start address, Length [, Error handling]

Deletes one FLASH-sector without blocking BASIC code execution.

Parameters:
 B W L S F
Start address ⚫ ⚫ ⚫ - - is the FLASH address where the erase process is

to start. This must be exactly a sector's start
address.

Length ⚫ ⚫ ⚫ - - is the number of bytes, which are to be erased.

The length must always be exactly the length of
one sector.

ERASE_FLASH_SECTOR instruction is supported as of Tiger IDE version 6.0.23 with Tiger
plus Firmware 3.12a or newer!

Tiger BASIC® programs can use the Data FLASH to store data. The first FLASH
address that can be used for data storage is 0, the last address which can be used
depends on the length of the Data FLASH. Precise values can be obtained by inquiring
the system variables with the function SYSVARN.

ERASE_FLASH_SECTOR can be used to erase a single sector. The exact start
address of the sector must be known and the erase length must be the sector length.
Otherwise, this instruction will not be carried out during the runtime (generates runtime
error). If the ERASE_FLASH_SECTOR command is successfully initiated, the FLASH is
busy for a short while and cannot be addressed.

This instruction can use its own Error handling in the form of a subroutine or
branch.
Notation:

ERASE_FLASH_SECTOR Start address, Length, ON_ERROR_CALL Subroutine
ERASE_FLASH_SECTOR Start address, Length, ON_ERROR_GOTO Label

Unlike ERASE_FLASH, ERASE_FLASH_SECTOR does not wait for the erase process
to finish before returning. ERASE_FLASH_SECTOR is executed in the background,
parallel to BASIC code execution.

Attention: If any flash operation is executed while an erase is in progress, the flash
operation will wait for the end of the erase!

30 www.wilke.de - +49.2405.408 55-0

New functions

To better control flash operation and waiting time you can use the SYSVARN with
FLASH_BUSY to check if the erase has finished.

Program example:

'---

' Name: Erase_flash_sector.tig

'---

user_var_strict

#include define_a.inc

task main

 long user_flash_size

 long i

 install device #LCD, "LCD1.TDP"

 run_task erase_complete_flash

 for i = 0 to 99999

 print #1, "<1BH>A<0><0><0F0H>running";i;" sec"

 wait_duration 1000

 next

end

task erase_complete_flash

 long flash_sectors

 long sector_size

 long i

 long busy

 flash_sectors = sysvarn (FLASH_DSEC, 0)

 sector_size = sysvarn (FLASH_SSIZE, 0)

 for i = 0 to flash_sectors - 1

 print #1, "<1BH>A<0><1><0F0H>sectors erased:"; i

 erase_flash_sector i * sector_size, sector_size

 busy = 1

 while busy > 0

 busy = sysvarn(FLASH_BUSY, 0)

 endwhile

 next

 print #1, "<1BH>A<0><2><0F0H>erase flash finished"

end

See also: SYSVARN

31 www.wilke.de - +49.2405.408 55-0

Device drivers

Device drivers

On principle, all device-drivers that can be found for the Tiger 1 (BASIC-Tiger,
TINY-Tiger, Econo-Tiger) are also available for the Tiger plus. A distinction is made in
the naming, however:

*.TDD: Device driver for Tiger 1
*.TD2: Device driver for Tiger 2
*.TDP: Device driver for Tiger plus

There might be some differences for some drivers due to special specifications of

the Tiger plus. These will be talked about in more detail later on.

There is no need to rename existing Tiger-1 device drivers in your source code. The
BASIC compiler choose the correct device driver for the connected module.

Example for installing the serial driver for Tiger plus (and Tiger 1 and Tiger 2):

 INSTALL_DEVICE #SER, "SER1B_K1.TDD", &

 BD_115_200, DP_8N, JA, & ' settings for SER0

 BD_115_200, DP_8N, JA ' settings for SER1

32 www.wilke.de - +49.2405.408 55-0

Device drivers

SER1B – serial interfaces

The SER1B serial interfaces only differ within the possible options for baudrates.

Baudrates:

Nr. Symbol Meaning BASIC-Tiger
TINY-Tiger
Econo-Tiger

TINY-Tiger 2 Tiger plus

0 BD_50 50 Bd

1 BD_75 75 Bd

2 BD_110 110 Bd

3 BD_150 150 Bd

4 BD_200 200 Bd

5 BD_300 300 Bd available available

6 BD_600 600 Bd available available

7 BD_900 900 Bd available available

8 BD_1_200 1,200 Bd available available available

9 BD_1_800 1,800 Bd available available

10 BD_2_400 2,400 Bd available available available

11 BD_3_600 3,600 Bd available available

12 BD_4_800 4,800 Bd available available available

13 BD_7_200 7,200 Bd available available

14 BD_9_600 9,600 Bd available available available

15 BD_14_400 14,400 Bd available available

16 BD_19_200 19,200 Bd available available available

17 BD_28_800 28,800 Bd available available

18 BD_38_400 38,400 Bd available available available

19 BD_57_600 57,600 Bd available available

20 BD_76_800 76,800 Bd available available available

21 BD_115_200 115,200 Bd available available

22 BD_153_600 153,600 Bd available available available

23 BD_230_400 230,400 Bd

24 BD_307_200 307,200 Bd available available

33 www.wilke.de - +49.2405.408 55-0

Device drivers

Nr. Symbol Meaning BASIC-Tiger
TINY-Tiger
Econo-Tiger

TINY-Tiger 2 Tiger plus

25 BD_460_800 460,800 Bd

26 BD_614_400 614,400 Bd available available

32 BD_31_250 31,250 Bd available available available

33 BD_62_500 62,500 Bd available available available

34 BD_EXT external
Oscillator / 16
Connect to CTS pin

 available

35 BD_10_400 10,400 Bd available available

36 BD_41_600 41,600 Bd available available

37 BD_100_000 100,000 Bd available available

38 BD_26_000 26,000 Bd available available

There is no more UFCI_SER_TX_LOCK support in Tiger plus.

In Tiger plus by UFCI_SER_9ADR it is possible to get only the address that is set by
UFCO_SER_9ADR. If address was not set yet, then default address 0 will be returned.

!

34 www.wilke.de - +49.2405.408 55-0

Device drivers

RTC1.TDP

The device-driver ‘RTC1’ supports the internal real time clock.

File name: RTC1.TDP

INSTALL DEVICE #D, "RTC1.TDP" [, P1]

D is a constant, variable or an expression of data type WORD, LONG,
BYTE in the range 0…63 and stands for the device number of the
driver.

P1 is a flag and determines whether the driver uses real hardware
RTC or software RTC.
YES: the driver uses real hardware RTC (default value).
NO: the driver uses software RTC.

Attention: In contrast to Tiger 1, the alarm time for Tiger plus can be set to a

maximum of 1 month in advance.

35 www.wilke.de - +49.2405.408 55-0

Device drivers

User-function-codes of the RTC1.TDP

RTC1-user-function-codes and the corresponding answers of the driver:

No. Symbol Description

160 UFCI_RTC_STAT0 Status of the RTC chip

 Answer of the driver:

0 RTC_INITIAL State immediately after power-on

1 RTC_INSTALLING Installing still continues

2 RTC_NO_RTC No RTC hardware available

3 RTC_PRESENT OK, RTC hardware present

4 RTC_RETRY Repeated attempt to find RTC

161 UFCI_RTC_STAT1 Status of the RTC device driver

 Answer of the driver:

0 RTC_READY Ready

1 RTC_BUSY Busy

162 UFCI_RTC_VOLTAGE Status voltage drop

 Answer of the driver:

0 RTC_READY There was no voltage drop, clock still running
as initialized

1 RTC_VOLTAGE_LOW Voltage of clock had been gone; it was
initialized again at the install device.

36 www.wilke.de - +49.2405.408 55-0

Device drivers

Program sample:

'---

' Name: RTC1_Tiger_plus.TIG

'---

#include define_a.inc

#include ufunc4.inc 'User Function Codes

task Main 'begin task main

 long seconds, prev_sec, voltage 'declare variables of

 'type long

 install_device #LCD, "LCD1.TDD" 'install LCD-driver

 install_device #RTC, "RTC1.TDD" 'install RTC-driver

 RTCSTAT = RTC_INITIAL

 while RTCSTAT < RTC_NO_RTC 'while searching for RTC

 get #RTC, #0, #UFCI_RTC_STAT0, 1, RTCSTAT 'get status of RTC

 print #LCD,"<1>installing";

 wait_duration 200

 endwhile

 if RTCSTAT = RTC_PRESENT then 'if RTC found

 seconds = 12345678 'preset value

 get #RTC, #0, #UFCI_RTC_VOLTAGE, 0, voltage 'get Voltage Low Bit

 if voltage = RTC_VOLTAGE_LOW then

 print #LCD, "<01>"; 'cursor to top left

 print #LCD, "Voltage Low" 'print to LCD

 print #LCD, "setting time"; 'print to LCD

 wait_duration 2000 'give some time to

 'notice text on LCD

 put #RTC, seconds 'set RTC in absolute

 'seconds

 else

 print #LCD, "<01>"; 'cursor to top left

 print #LCD, "NO Voltage Low" 'print to LCD

 print #LCD, "not setting time"; 'print to LCD

 wait_duration 2000 'give some time to

 'notice text on LCD

 endif

 while 1 = 1 'endless loop

 prev_sec = seconds 'store old time

 while seconds = prev_sec 'while current = old

 'time

 get #RTC, 0, seconds 'read RTC

 endwhile

 print #LCD,"<1>RTC-Time =<0>";seconds; 'if new time, show it

 endwhile

 else 'if no RTC

 print #LCD, "<1>No RTC found"

 endif

end 'end task main

37 www.wilke.de - +49.2405.408 55-0

Device drivers

ANALOG1.TDP
The device driver ‘ANALOG1’ reads the instantaneous value of the analog inputs.

INSTALL DEVICE #D, "ANALOG1.TDP"

D is a constant, variable or an expression of data type WORD, LONG,
BYTE in the range 0…63 and stands for the device number of the
driver.

The device driver ANALOG1.TDD reads the internal analog inputs. The
instantaneous values are read. The resolution is 8 bit if BYTEs are read (e.g.: GET
#n,#sa,1,CHAR) or 10 bit if WORD or LONG values are read. For secondary addresses
from 100 12-bit values are read.

The resolution can be improved and the noise "calculated out" with the aid of the
FIFO buffer and the command INTEGRAL_FIFO.

Secondary addresses for TINY, BASIC and ECONO Tiger

Sec. address Function Instruction

0 Reads from A/D channel 0 (8 bit or 10 bit) GET

1 Reads from A/D channel 1 (8 bit or 10 bit) GET

2 Reads from A/D channel 2 (8 bit or 10 bit) GET

3 Reads from A/D channel 3 (8 bit or 10 bit) GET

4 Reads all 4 A/D channels (8 bit) GET

5 Reads all 4 A/D channels (10 bit) GET

100 Reads from A/D channel 0 (12 bit) GET

101 Reads from A/D channel 1 (12 bit) GET

102 Reads from A/D channel 2 (12 bit) GET

103 Reads from A/D channel 3 (12 bit) GET

112 Reads all 4 A/D channels (12 bit) GET

38 www.wilke.de - +49.2405.408 55-0

Device drivers

Secondary addresses for Tiger 2

Sec. address Function Instruction

0 Reads from A/D channel 0 (8 bit or 10 bit) GET

1 Reads from A/D channel 1 (8 bit or 10 bit) GET

2 Reads from A/D channel 2 (8 bit or 10 bit) GET

3 Reads from A/D channel 3 (8 bit or 10 bit) GET

4 Reads from A/D channel 4 (8 bit or 10 bit) GET

5 Reads from A/D channel 5 (8 bit or 10 bit) GET

6 Reads from A/D channel 6 (8 bit or 10 bit) GET

7 Reads from A/D channel 7 (8 bit or 10 bit) GET

8 Reads from A/D channel 8 (8 bit or 10 bit) GET

9 Reads from A/D channel 9 (8 bit or 10 bit) GET

10 Reads from A/D channel 10 (8 bit or 10 bit) GET

11 Reads from A/D channel 11 (8 bit or 10 bit) GET

12 Reads all 12 A/D channels (8 bit) GET

13 Reads all 12 A/D channels (10 bit) GET

100 Reads from A/D channel 0 (12 bit) GET

101 Reads from A/D channel 1 (12 bit) GET

102 Reads from A/D channel 2 (12 bit) GET

103 Reads from A/D channel 3 (12 bit) GET

104 Reads from A/D channel 4 (12 bit) GET

105 Reads from A/D channel 5 (12 bit) GET

106 Reads from A/D channel 6 (12 bit) GET

107 Reads from A/D channel 7 (12 bit) GET

108 Reads from A/D channel 8 (12 bit) GET

109 Reads from A/D channel 9 (12 bit) GET

110 Reads from A/D channel 10 (12 bit) GET

111 Reads from A/D channel 11 (12 bit) GET

112 Reads all 12 A/D channels (12 bit) GET

39 www.wilke.de - +49.2405.408 55-0

Device drivers

Examples:

GET #AD1, #0, 1, value reads from the Analog1 driver from A/D-channel 0

exactly 1 byte into variable ‘value’ (8 bit resolution).
Value is of type BYTE, WORD or LONG.

GET #AD1, #1, 2, value reads from the Analog1 driver from A/D-channel 1

exactly 2 bytes into variable ‘value’ (10 bit
resolution). Value is of type WORD or LONG.

GET #AD1, #102, 2, value reads from the Analog1 driver from A/D-channel 2

exactly 2 bytes into variable ‘value’ (12 bit
resolution). Value is of type WORD or LONG.

GET #AD1, #112, 0, V$ reads from the Analog1 driver from all A/D-channels

exactly 2 byte per channel into V$ (12 bit resolution).
V$ is of type STRING and must be large enough to
accommodate 8 Bytes for TINY, BASIC and ECONO
Tiger (4 A/D channels) or 24 Bytes for Tiger-2 (12 A/D
channels). The low value byte from channel 0 is the
first byte. The value of a channel can, e.g., be read
from the string like this (CH = channel number):
Value = NFROMS (V$, CH*2, 2)

40 www.wilke.de - +49.2405.408 55-0

Device drivers

Program sample:

'---

' Name: ANALOG1_T2plus.tig

'---

user_var_strict '

#include define_a.inc

TASK Main ' begin Task MAIN

 ARRAY Value(12) OF LONG ' LONG-Array declaration

 String result$ ' String declaration

 LONG K ' LONG variable declaration

 byte pos ' BYTE variable declaration

 INSTALL_DEVICE #LCD, "LCD1.TD2" ' install LCD-Driver (Tiger 2)

 INSTALL_DEVICE #AD1, "ANALOG1.TDP" ' Analog-Inputs Device Driver

 ' 1. example: Read out ONLY 1 channel and with 8-Bit resolution

 FOR K = 0 TO 11 ' 12 channels (0 - 11)

 GET #AD1, #K, 1, Value(K) ' read out value from ADC from

 ' channel K 8-Bit resolution(1 Byte)

 PRINT #LCD, "<1>"; ' delete LCD

 PRINT #LCD, "Single Ch. 8-Bit:" ' show info on LCD

 PRINT #LCD, "AD"; K; ":"; ' show channel number

 PRINT #LCD, Value(K) ' show value on LCD

 WAIT_DURATION 500 ' wait 500ms

 NEXT ' next channel

 WAIT_DURATION 1000 ' wait 1 second

 ' 2. example: Read out ONLY 1 channel and with 10-Bit resolution

 FOR K = 0 TO 11 ' 12 channels (0 - 11)

 GET #AD1, #K, 2, Value(K) ' read out value from ADC from

 ' ch. K 10-Bit resolution(2 Byte)

 PRINT #LCD, "<1>"; ' delete LCD

 PRINT #LCD, "Single Ch. 10-Bit:" ' show info on LCD

 PRINT #LCD, "AD"; K; ":"; ' show channel number

 PRINT #LCD, Value(K) ' show value on LCD

 WAIT_DURATION 500 ' wait 500ms

 NEXT ' next channel

 WAIT_DURATION 1000 ' wait 1 second

 ' 3. example: Read out ONLY 1 channel with 12-Bit resolution

 FOR K = 0 TO 11 ' 12 channels (0 - 11)

 GET #AD1, #K+100, 2, Value(K) ' read out value from ADC from

 ' ch. K 12-Bit resolution (2 Byte)

 PRINT #LCD, "<1>"; ' delete LCD

 PRINT #LCD, "Single Ch. 12-Bit:" ' show info on LCD

 PRINT #LCD, "AD"; K; ":"; ' show channel number

 PRINT #LCD, Value(K) ' show value on LCD

 WAIT_DURATION 500 ' wait 500ms

 NEXT ' next channel

 WAIT_DURATION 1000 ' wait 1 second

 ' 4. example: Read out ALL Channels with 8-Bit resolution

 GET #AD1, #12, 12, result$ ' read ALL channels with 8-Bit

 ' resolution in String (12 Byte)

 FOR pos=0 TO 11 STEP 1 ' 12 channels (0 - 11)

 PRINT #LCD, "<1>"; ' delete LCD

 PRINT #LCD, "All Ch. 8-Bit:" ' show info on LCD

41 www.wilke.de - +49.2405.408 55-0

Device drivers

 PRINT #LCD, "AD"; pos; ":"; ' show channel number

 PRINT #LCD, NFROMS(result$,pos,1) ' show value of channel

 WAIT_DURATION 500 ' wait 500ms

 NEXT '

 WAIT_DURATION 1000 ' wait 1 second

 ' 5. example: Read out ALL Channels with 10-Bit resolution

 GET #AD1, #13, 24, result$ ' read ALL channels with 10-Bit

 ' resolution in String (24 Byte)

 FOR pos=0 TO 11 STEP 1 ' 12 channels (0 - 11)

 PRINT #LCD, "<1>"; ' delete LCD

 PRINT #LCD, "All Ch. 10-Bit:" ' show info on LCD

 PRINT #LCD, "AD"; pos; ":"; ' show channel number

 PRINT #LCD, NFROMS(result$,pos*2,2) ' show result to LCD

 WAIT_DURATION 500 ' wait 500ms

 NEXT '

 ' 6. example: Read out ALL Channels with 12-Bit resolution

 GET #AD1, #112, 24, result$ ' read ALL channels with 12-Bit

 ' resolution in String (24 Byte)

 FOR pos=0 TO 11 STEP 1 ' 12 channels (0 - 11)

 PRINT #LCD, "<1>"; ' delete LCD

 PRINT #LCD, "All Ch. 12-Bit:" ' show info on LCD

 PRINT #LCD, "AD"; pos; ":"; ' show channel number

 PRINT #LCD, NFROMS(result$,pos*2,2) ' show result to LCD

 WAIT_DURATION 500 ' wait 500ms

 NEXT '

END

42 www.wilke.de - +49.2405.408 55-0

Device drivers

ANALOG2.TDP

The device-driver ANALOG2 reads in analog values controlled by the time basis
device driver ‘TIMERA’ and stores them in a FIFO-buffer (FIFO=First-In-First-Out) or a
string.

Further information about ANALOG2.TDP:

• User-function-codes
• Measuring with trigger

File name: ANALOG2.TDP

INSTALL DEVICE #D, "ANALOG2.TDP"

D is a constant, variable or an expression of data type WORD, LONG,
BYTE in the range 0…63 and stands for the device number of the
driver.

The device driver ANALOG2.TD2 reads in analog values from the internal analog
channels into a FIFO buffer or a string. The measurements are synchronized with the
help of the time basis driver ‘TIMERA.TD2’ so that they are taken independent of the
BASIC program and up to high speeds. The time basis driver provides a basic frequency
that is divided down through the prescaler of the driver ANALOG2 to the actual
measuring rate. The setting of the prescaler can be changed through commands (user-
function-code) to the driver.

Please note: TIMERA.TD2 must be integrated before ANALOG2.TD2.

The driver supports the resolutions 8-bit, 10-bit and 12-bit. The 12-bit resolution
is extrapolated from a 10-bit reading using numerical integration. The analog values
can be read in either into a string or a FIFO buffer. The following reading modes are
supported:

• from a single channel (0, 1, 2, 3)
• from channel 0 and 1
• from channel 0, 1 and 2
• from channel 0, 1, 2 and 3

There are therefore many different settings, from which channel in what resolution to
where the analog values are read in. For this purpose, the speed (measure or sample
rate) can be adjusted in many ways. In addition, options can be selected that relate to
the behavior of the reading as far as strings or FIFO-buffer is concerned. Therefore,
following is some information concerning the differences between ‘measurement in

43 www.wilke.de - +49.2405.408 55-0

Device drivers

string’ and ‘measurement in FIFO’ and what has to be paid attention to with the
different settings.

For setting up the analog measuring system, there are several user-function
codes, which are defined as symbolical names in UFUNCn.INC. Settings that have been
carried out once are maintained and must not be done again before each
measurement. If options are given explicitly at the start of the measurement (offset in
the string, number of measurements), then these are valid only for this one
measurement. The settings that have been made beforehand with the help of the user-
function-codes will be maintained.

The following table shows an overview of the function-codes of this driver. The file
UFUNCx.INC must be integrated, so that the compiler knows the command symbols.

44 www.wilke.de - +49.2405.408 55-0

Device drivers

User-function-codes of the ANALOG2.TD2

User-function-codes of the ANALOG2.TD2 for setting of parameters (PUT):

No. Symbol Description

46 UFCO_AD2_RESET Set all parameters to default values

128 UFCO_AD2_CHAN Set single channel mode (FIFO, STRING):
0, 1, 2, 3 (default: 1)
This channel is also the measured channel in
the mode multi-channel measurement, if only
one channel is set.

129 UFCO_AD2_RESO Set resolution (FIFO, STRING):
8 = 8-bit (default)
10 = 10-bit
12 = 12-bit

130 UFCO_AD2_INTEG Integration-width at 12-bit (FIFO, STRING):
16, 32, 64, or 128 (default: 16)

131 UFCO_AD2_STOVL Flag: "Stop-on-FIFO-overflow" (FIFO)
0 = YES
n = no = wrap-around for FIFO
It is always stopped with strings.

132 UFCO_AD2_CNT Number of measures (per channel) (FIFO)
0 = endless (only for FIFO, default)
n = number (LONG)

133 UFCO_AD2_PSCAL Pre-scaler, divides the basic frequency of the
driver "TIMERA.TDD" down (FIFO, STRING):
0,1 = without pre-scaler
n = divider (WORD)

134 UFCO_AD2_STOP Stop AD-sampling (FIFO, STRING):
only DUMMY-parameter

45 www.wilke.de - +49.2405.408 55-0

Device drivers

No. Symbol Description

136 UFCO_AD2_SCAN Set multi-channel mode and number of
channels (FIFO, STRING):
n = 1: the last channel to be set with
UFCO_AD2_CHAN
n = 2: 2-channel: Ch-0, Ch-1
n = 3: 3-channel: Ch-0, Ch-1, Ch-2
n = 4: 4-channel: Ch-0, Ch-1, Ch-2, Ch-3

137 UFCO_AD2_ISAMP Integral-samples (FIFO, STRING): tells which
measurement is to be written into the target
buffer (e.g. every 2nd, every 10th, …). Is only
valid when INTEGRATION is done (only for 12-
bit)
values: 1...65535 (WORD)

138 UFCO_AD2_TRIG_SAMPLE Sets the number of samples that are
measured after the trigger event occurs and
at the same time activates the trigger mode.
To deactivate, set to 0FFFFH.

139 UFCO_AD2_TRIG_HLEV Sets the high trigger level. When
measurement is exceeding this value, the
trigger event sets in. Exactly 4, 8 or 12
WORDs are expected (one WORD for each
channel)

140 UFCO_AD2_TRIG_LLEV Sets the low trigger level. When measurement
is falling below this value, the trigger event
sets in. Exactly 4, 8 or 12 WORDs are
expected (one WORD for each channel)

143 UFCO_AD2_PSCIMM Sets the pre-scaler during the running
measurement.

46 www.wilke.de - +49.2405.408 55-0

Device drivers

User-function-codes of the ANALOG2.TD2 for reading in parameters (GET):

No. Symbol Description

68 UFCI_CPU_LOAD Read the CPU-performance that is consumed
by this driver (100%=10.000)

99 UFCI_DEV_VERS Version of the driver

145 AD2_MEAS_ACT Reads out if driver is currently measuring.
0 = not running
1 = running

146 AD2_RELOAD_FLAG Reads out if a reload string is available for
continuous sampling
0 = no reload string available
1 = reload string is available

147 AD2_MEAS_REST Number of remaining measurements that fit
into used FIFO or STRING + reload STRING

148 AD2_TRIG_POS Reads out the trigger position, when the
trigger event has occurred

149 AD2_STRI_WRITE Reads out the current writing position in the
string

150 AD2_STRI_OVL Reads out, whether the string has already
overrun once in trigger mode.
0: string overrun at least one time
0FFH: String has not overrun yet

47 www.wilke.de - +49.2405.408 55-0

Device drivers

Measuring with trigger

Measuring with trigger is activated with the User-Function-Code

UFCO_AD2_TRIG_SAMPLE. When a value is set here, a trigger is used for sampling, to
work without trigger again, this value simply has to be set to 0FFFFH.

When measuring with trigger, first, there is endless sampling. When the end of the
string is reached, writing continues at the beginning, in this case the string is a ring
buffer, who continuously keeps the most recent values. The length of the string at this
time is 0FFFFFFFFH for Tiny Tiger 2 and Tiger plus series and 0FFFFH for first Tiger
generation. This does not correspond to the real length, but is a flag for the situation
that the trigger event has not occurred yet. As soon as the string overflows for the first
time, you will read out a 0 with the User-Function-Code UFCI_AD2_STRI_OVL. The most
recent writing position can continually be queried with the User-Function-Code
UFCI_AD2_STRI_WRITE.

As soon as the measurement value in a channel exceeds the set trigger limit(s),
the trigger event sets in. The length of the string now has the value 0FFFFFFFEH for Tiny
Tiger 2 and Tiger plus series and 0FFFEH for first Tiger generation, so that it becomes
clear that the trigger has already occurred. Now, exactly as many samples are done as
were set in the User-Function-Code UFCO_AD_TRIG_SAMPLE, then the measurement is
stopped. The length of the string is set to the position at which the trigger event
occurred; the length thus is a marking. After that, the length of the string should be set
back to the maximum length in the BASIC program. Now the string can be evaluated. A
new measurement can be started normally at any time.

Measuring with trigger is restricted to strings and not possible with FIFO !!!

48 www.wilke.de - +49.2405.408 55-0

Device drivers

Program sample:

user_var_strict

#INCLUDE DEFINE_A.INC ' common defines

#INCLUDE UFUNC4.INC ' User Function Codes

#define MLEN 200

#define TLEVEL 700

STRING M$ (MLEN) ' meassurement-string (global!)

TASK MAIN ' begin Task MAIN

' TIMER-A driver installation (Zeitbasis Timer: 1001Hz)

 INSTALL_DEVICE #TA, "TIMERA.TD2", 3, 156

' ANALOG-2 driver installation

 INSTALL_DEVICE #AD2, "ANALOG2.TD2"

 word t0,t1,t2,t3 ' trigger level

 long K

 t0 = TLEVEL ' set trigger level for channel 0

 t1 = TLEVEL ' set trigger level for channel 1

 t2 = TLEVEL ' set trigger level for channel 2

 t3 = TLEVEL ' set trigger level for channel 3

 M$="" ' meassurement-string empty

 PUT #AD2,#0,#UFCO_AD2_PSCAL, 0 ' no pre-scaler

 PUT #AD2,#0,#UFCO_AD2_RESO, 10 ' resolution

 PUT #AD2,#0,#UFCO_AD2_CHAN, 0 ' channel

 PUT #AD2,#0,#UFCO_AD2_SCAN, 4 ' no. of channels

 PUT #AD2,#0,#UFCO_AD2_TRIG_SAMPLE, 10 ' samples after trigger

 PUT #AD2,#0,#UFCO_AD2_TRIG_HLEV, t0, t1, t2, t3 ' set trigger for channels

 PUT #AD2,M$ '

 #ifdef TIGER_1 ' codeblock for 1st generation Tiger

 K = 0FFFFH ' init k

 while K >= 0FFFEH ' wait for trigger and

 ' end of meassurement

 K = len(M$) ' read flag

 endwhile

 #endif

 #ifdef TIGER_2 ' codeblock for 2st generation Tiger

 K = 0FFFFFFFFH ' init k

 while K < 0 ' wait for trigger and

 ' end of meassurement

 K = len(M$) ' read flag

 endwhile

 #endif

 #ifdef TIGER_PLUS ' codeblock for Tiger plus

 K = 0FFFFFFFFH ' init k

 while K < 0 ' wait for trigger and

 ' end of meassurement

 K = len(M$) ' read flag

 endwhile

 #endif

 set_len$(M$,MLEN) ' meassurement finished, set real length

END ' Ende Task MAIN

49 www.wilke.de - +49.2405.408 55-0

Device drivers

The low level trigger works analog to this. When the measured value falls below
the trigger level, the trigger event occurs. High level and low level triggers can be
combined in any way; both can be used for one channel at the same time, as well.

If a trigger is to be turned off for a channel, it is set to a limit value which can never
be exceeded. For the low level trigger 0 is selected, for the high level trigger 0FFFFH is
selected, e.g.

When the trigger measurement is activated, but all triggers are deactivated, the
string is simply sampled into, which can of course be read out at any time, until the
measurement is stopped manually.

Please note:

At the 8-bit trigger measurement only the lower 8 bit of the trigger level are taken
into account. The value 100H thus corresponds to an 8-bit trigger value of 0!

50 www.wilke.de - +49.2405.408 55-0

Device drivers

CAN-Bus

The device driver ‘CAN1_xx.TDP’ supports the internal CAN interface of the TINY-
Tiger 2 plus.

This section contains:

Differences to TCAN & Tiny Tiger 2 51
Description of the device driver CAN1_xx.TDP 52
CAN messages in the I/O-buffer of the driver 54
Standard frame 55
Extended Frame 57
CAN User-Function-Codes 59
Reinstall CAN driver 61
Master reset 63
Bus-Timing and transfer rate 64
Bustiming-Register 0 65
Bustiming-Register 1 65
Error Register 67
Arbitration-Lost error 68
RXERR receive error counter 69
TXERR send error counter 70
Receive filter with Code and Mask 71
Set Access-Code and Access-Mask 72
Standard-Frame with Single-Filter configuration 76
Extended Frame with Single-Filter configuration 79
Setting of more access codes in standard format 83
Setting of the local acceptance mask in standard format 85
Setting of more access codes in extended format 87
Setting of the local acceptance mask in extended format 90
Sending CAN messages 92
Receive CAN messages 96
CAN RTR messages 100
I/O buffer 102
Automatic bit rate detection 104
A short introduction to CAN 107
Error situations 109

51 www.wilke.de - +49.2405.408 55-0

Device drivers

Differences to TCAN & Tiny Tiger 2

The CAN1 device driver of the Tiny Tiger 2 plus has minor deviations from the
versions used with Basic-Tiger-CAN (TCAN) and Tiny Tiger 2.

Dual-Filter configuration
Like the Tiny Tiger 2, the Tiny Tiger 2 plus does not support the dual filter mode
present in the TCAN version. Only single 32bit filters are usable.
To set more than one CODE and MASK combination, please refer to the section
Setting of more access codes in standard format or Setting of more access codes
in extended format

User-Function-Codes that are no longer present
UFCI_CAN_ALC
UFCI_CAN_ECC
UFCI_CAN_EWL
UFCI_CAN_RMC
UFCO_ERRC_RESET
UFCO_CAN_CMD
UFCO_CAN_EWL

Setting multiple access codes with global acceptance mask
Using the global mask for additional access codes on Tiny Tiger 2 had the effect,
that the IDE bit was ignored, even when it was set in the global acceptance mask.
Tiny Tiger 2 plus will now use the IDE bit correctly.
If your program needs to ignore the IDE bit, set it to “do not care” in the global
acceptance mask.
See section Set Access-Code and Access-Mask for details on mask bits and
Setting of more access codes in standard format or Setting of more access codes
in extended format for details on the usage of global and local acceptance mask

Bus-Off recovery
The CAN chip will recover from Bus-Off (become error active again) automatically.
It will start the recovering sequence (128 occurrences of 11 consecutive
recessive bits monitored on CANRX) automatically after it has entered Bus-Off
state.

52 www.wilke.de - +49.2405.408 55-0

Device drivers

Description of the device driver CAN1_xx.TDP

This device driver enables input and output on the CAN-bus in connection with

the TINY-Tiger 2 plus. The parameters of the CAN interface can be specified during
installation of the driver. Some parameters can also be changed during the running
time by commands to the driver.

File names: CAN1_K8.TDP (with 8K buffers)
CAN1_K1.TDP (with 1K buffers)
CAN1_R1.TDP (with 256 byte buffers)

INSTALL DEVICE #D, "CAN1_xx.TDP" [, Code, Mask, Bt0, Bt1, Mod, Outctrl]

D is a constant, variable or expression of the data type BYTE,
WORD, LONG in the range 0...63 and stands for the device
number of the driver.

Code is a parameter to determine the Access-Code. 'Code' is always
4 bytes long. The range of values for the Access code with
standard frames is 0...7FFh and with extended frames 0...1FFF
FFFF.
Default value: 0

Mask is a parameter to determine the acceptance filter. 'Mask' is
always 4 bytes long.
Default value: 0FFFFFFFFh

Bt0 (Bustiming-Register-0) is a parameter to determine the baud
rate-prescalers and the synchronisation step (1 byte). This
determines the transfer rate together with Bt1.
Default value: 0

Bt1 (Bustiming-Register-1) is a parameter to determine the Bus-
Timing and the number of samples during receipt (1 byte). This
also determines the transfer rate together with Bt0.
Default value: 2Fh (Tseg1=15, Tseg2=2)

Mod is a parameter to determine the mode (1 byte) .
Default value: 0

53 www.wilke.de - +49.2405.408 55-0

Device drivers

Bit Symbol if bit set (‘1’)

1 CAN_LISTEN Listen-Only-Mode

2 CAN_SELFTEST Selftest-Mode

3 reserved

4 CAN_SLEEP Sleep-Mode

0,5,6 reserved

If the Listen-Only mode is installed the driver tries to
automatically recognize the bit rate on the bus on the basis of a
table with predefined bit rates.

Outctrl is a dummy parameter. Default value is 1Ah.

Example for an installation for 500 kBit:

 install_device #CAN, "CAN1_K1.TD2", &

 0,0,0,0, & ' access code

 0ffh,0ffh,0ffh,0ffh, & ' access mask

 0,2Fh, & ' bustim1, bustim2

 0,1Ah ' mode, outctrl

54 www.wilke.de - +49.2405.408 55-0

Device drivers

CAN messages in the I/O-buffer of the driver

The I/O buffers of the Tiger-BASIC-CAN device driver always contains complete

CAN messages and no further bytes. A CAN message starts with the Frame-Info-byte,
which determines whether this is a message with an 11 or 29-Bit-Identifier and how
many data bytes are contained therein. The Frame-Info-Byte also contains the RTR-bit.
This is followed by 3 Identifier-bytes (standard frame) or 5 Identifier-bytes (extended
frame) and then the data bytes depending on the frame type. A CAN message can
transfer 0...8 bytes as useful data.

The Frame-Info-Byte also contains information on

• the frame type (11 or 29 ID-Bits)
• the number of data bytes (0...8)
• whether this is a Remote-Transmit-Request

The Identifier can

• be 29 bits long and the occupies 4 bytes in the buffer
• be 11 bits long and then occupies 2 bytes in the buffer

A standard frame occupies a maximum of 11 bytes, an extended frame a
maximum of 13 bytes in the buffer. If the device driver does not have at least 13 bytes
free in the buffer free during receipt the message will be rejected and an error
registered 'Buffer overflow'. Between 341 messages (only standard frames without
data) and 78 message (only extended frames, all with 8 data bytes) fit in a 1kByte
buffer depending on the length of the individually received CAN message.

55 www.wilke.de - +49.2405.408 55-0

Device drivers

Standard frame

The illustration shows the structure of the standard frame with enlarged Frame-

Info-Byte (top) and the ID-byte (enlarged bottom). The length of the message is set
automatically by the device driver. The 11 ID-bits must first be flush left with the
highest-order bit in the two bytes, as shown in the illustration.

0 RTR 0 0 DLC3 DLC2 DLC1 DLC0

info ID1 ID2 data0 data1 data2 data3 data4 data5 data6 data7

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 0 0 0 0 0

4 Bits geben Anzahl der

Datenbytes in der Message

an. Maximal 8

Frame-Format: 0

Remote Transmit Request

CAN-Message mit insgesamt 11 Bytes

Structure of the 'Standard Frame'

Standard Frame, Info-bits:

FF Frame-Format bit, here FF=0.
0: Standard Frame 1: extended Frame

RTR Remote Transmit Request, send request. Messages with a set
RTR-bit will be responded directly by the driver, if a reply is
specified.

DLC 4 bits specify the number of data bytes in the message (0...8).
This bit sets the device driver.

The 11-Bit-Identifier of the CAN message can be found in both ID-bytes, offset by
5 bits to the left. The format here is 'high-byte first’, unlike the WORD variables in Tiger-
BASIC which are 'low-byte first'.

56 www.wilke.de - +49.2405.408 55-0

Device drivers

The ID-bytes are followed by as many data bytes as specified by DLC.

Example for the generation of standard frames in Tiger-BASIC:

t_id = 7FFh shl 5 ' Transmit-ID, left-aligned in WORD

' Standard frame with frame info byte, 2 empty ID bytes, data

msg$ = "<0><0><0>" + data$

msg$ = ntos$ (msg$, 1, -2, t_id) ' fit in ID with high-byte first

 ' length is set by driver

print #CAN, msg$; ' PRINT, with semicolon!!

' or

put #CAN, msg$

57 www.wilke.de - +49.2405.408 55-0

Device drivers

Extended Frame

1 RTR 0 0 DLC3 DLC2 DLC1 DLC0

info ID1 ID2 data0 data1 data2 data3 data4 data5 data6 data7

ID

10
ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 0 0 0

4 Bits geben Anzahl der

Datenbytes in der Message

an. Maximal 8

Frame-Format: 1

Remote Transmit Request

CAN-Message mit insgesamt 13 Bytes

ID3 ID4

ID

11

ID

12

ID

13

ID

14

ID

15

ID

23

ID

22

ID

21

ID

20

ID

19

ID

18

ID

17

ID

16

ID

24

ID

25

ID

26

ID

27

ID

28

Structure of the 'extended Frame'

Extended Frame, Info-Bits:

FF Frame-Format-Bit, here FF=1.
0: Standard Frame
1: extended Frame

RTR Remote Transmit Request, send request. Messages with a set
RTR-bit will be responded directly by the driver, if a reply is
specified.

DLC 4 bits specify the number of data bytes in the message (0...8).

The 29-Bit-Identifier of the CAN message can be found in the 4 ID-bytes, offset by
3 bits to the left. The format here is 'high-byte first’, unlike the LONG-variables which
are 'low-byte first'.

The ID-bytes are followed by as many data bytes as specified by DLC.

58 www.wilke.de - +49.2405.408 55-0

Device drivers

Example for the generation of extended frames in Tiger-BASIC®:

t_id = 1FFFFFFFh shl 3 ' Transmit-ID, left-aligned in LONG

' extended frame with frame info byte, 4 empty ID bytes, data

msg$ = "<80h><0><0><0><0>" + data$

msg$ = ntos$ (msg$, 1, -4, t_id) ' fit in ID with high-byte first

 ' length is set by driver

print #CAN, msg$; ' PRINT with semicolon!!

' or

put #CAN, msg$

59 www.wilke.de - +49.2405.408 55-0

Device drivers

CAN User-Function-Codes

User-Function-Codes for inquiries (Instruction GET):

No Symbol
Prefix UFCI_

Description

1 UFCI_IBU_FILL No. of bytes in input buffer (Byte)

2 UFCI_IBU_FREE Free space in input buffer (Byte)

3 UFCI_IBU_VOL Size of input buffer (Byte)

33 UFCI_OBU_FILL Number of bytes in output buffer (Byte)

34 UFCI_OBU_FREE Free space in output buffer (Byte)

35 UFCI_OBU_VOL Size of output buffer (Byte)

65 UFCI_LAST_ERRC Last error code

99 UFCI_DEV_VERS Driver version

144 UFCI_CAN_EERR Byte 1+2: Buffer overflow count
counter is reset after reading

152 UFCI_CAN_MODE reads CAN register MODE

153 UFCI_CAN_STAT reads CAN register STAT

154 UFCI_CAN_CODE get CAN register CODE0

155 UFCI_CAN_MASK get CAN register MASK0

158 UFCI_CAN_RXERR reads copy from ‘rx error counter register’

159 UFCI_CAN_TXERR reads copy from ‘tx error counter register’

161 UFCI_CAN_BUSY get CAN busy state

60 www.wilke.de - +49.2405.408 55-0

Device drivers

User-Function-Codes for output (Instruction PUT):

No Symbol
Prefix: UFCO_

Description

1 UFCO_IBU_ERASE Delete input buffer

33 UFCO_OBU_ERASE Delete output buffer

136 UFCO_CAN_MODE sets CAN register MODE

138 UFCO_CAN_CODE sets CAN register CODE

139 UFCO_CAN_MASK sets CAN register MASK

140 UFCO_CAN_BUSTIM0 sets CAN register BUSTIM0

141 UFCO_CAN_BUSTIM1 sets CAN register BUSTIM1

162 UFCO_CAN_LAM sets local acceptance mask (only channel-16)

176 UFCO_CAN_RESET Resets and reinstalls the CAN bus

193 UFCO_CAN_RESRM Resets and reinitializes the CAN bus

61 www.wilke.de - +49.2405.408 55-0

Device drivers

Reinstall CAN driver

PUT #D, #0, #UFCO_CAN_RESET, Code, [Mask, Bt0, Bt1, Mod, Outctrl]

D is a constant, variable or expression of the data type BYTE, WORD,
LONG in the range from 0→63 and stands for the device number
of the drivers.

Code is a parameter to determine the Access-Code. 'Code' is always
4 bytes long. The range of values for the Access code with
standard frames is 0...7FFh and with extended frames 0...1FFF
FFFF.
Default value: 0

Mask is a parameter to determine the acceptance filter. 'Mask' is
always 4 bytes long.
Default value: 0FFFFFFFFh

Bt0 (Bustiming-Register-0) is a parameter to determine the baud
rate-prescalers and the synchronisation step (1 byte). This
determines the transfer rate together with Bt1.
Default value: 0

Bt1 (Bustiming-Register-1) is a parameter to determine the Bus-
Timing and the number of samples during receipt (1 byte). This
also determines the transfer rate together with Bt0.
Default value: 2Fh (Tseg1=15, Tseg2=2)

Mod is a parameter to determine the mode (1 byte) .
Default value: 0

Bit Symbol if bit set (‘1’)

1 CAN_LISTEN Listen-Only-Mode

2 CAN_SELFTEST Selftest-Mode

3 reserved

4 CAN_SLEEP Sleep-Mode

0,5,6 reserved

If the Listen-Only mode is installed the driver tries to
automatically recognize the bit rate on the bus on the basis of a
table with predefined bit rates.

62 www.wilke.de - +49.2405.408 55-0

Device drivers

Outctrl is a dummy parameter. Default value is 1Ah.

This command forces a master reset and reinstalls the driver. Everything is
reinitialized, including the buffers. All previously made settings are lost. The
parameters are the same as those for the install device.

Example:

 put #CAN, #0, #UFCO_CAN_RESET, &

 0,0,0,0, & ' access code

 0ffh,0ffh,0ffh,0ffh, & ' access mask

 0,2Fh, & ' bustim1, bustim2

 0,1Ah ' mode, outctrl

63 www.wilke.de - +49.2405.408 55-0

Device drivers

Master reset

PUT #D, #0, #UFCO_CAN_RESRM, dummy

D is a constant, variable or expression of the data type BYTE, WORD,
LONG in the range from 0→63 and stands for the device number
of the drivers.

dummy is a constant, variable or expression of the data type BYTE, WORD,
LONG in the range from 0→63 and stands for the device number
of the drivers.

This command forces a master reset and a re-initialization of the CAN bus. The
previously used settings are kept. The buffers are not affected by this.

64 www.wilke.de - +49.2405.408 55-0

Device drivers

Bus-Timing and transfer rate

The transfer rate is determined by the length of a bit. A bit is made up of three

sections which in turn consist of individual time segments:

• Sync-Segment, always one time segment long.
• TSEG1 is between 5 and 15 time segments long. The bit is sampled during

receipt within Tseg1.
• TSEG2 is between 2 and 7 time segments long.

Sync

Seg
TSeg1 TSeg2

Sync

Seg

nominal bit time

tseg1 tseg2

tscl

sample point(s)

Ausgang des Baudrate-Prescalers

tsyncseg

Structure of a bit:

The unit of a time segment is determined in the Bustiming-Register 0, the number
of time segments which make up TSEG1 and TSEG2 in the Bustiming-Register 1.

65 www.wilke.de - +49.2405.408 55-0

Device drivers

Bustiming-Register 0

The length of a time segment 'tscl' is determined in the Bustiming-Register 0, by
the baud rate-prescaler BRP. The 6-bit prescaler can assume values between 0 and 31.

1 Time segment: tscl = 0,1 * (BRP+1) µsec

1 Bit time = Tsync + Tseg1 + Tseg2

The upper bits in this register determine the synchronization step. The value SJW
determines the maximum number of clock cycles by which a bit may be shortened or
extended to compensate phase differences between different bus controllers through
resynchronization.

Bustiming-Register 0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0

Bustiming-Register 1

Bustiming-Register-1 determines the number of time segments in Tseg1 and
Tseg2 and how often the received bit is sampled (once or three times).

Bustiming-Register 1

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SAM TSEG2.2 TSEG2.1 TSEG2.0 TSEG1.3 TSEG1.2 TSEG1.1 TSEG1.0

SAM=1: The bus is sampled three times. Recommend for slow and

medium-speed buses if filtration of spikes on the bus brings
advantages.

SAM=0: The bus is sampled once. Recommend for fast buses.

Which values of Tseg1 and Tseg2 guarantee a safe receipt depends on the

physical characteristics of the transmission medium, including driver components,
optical coupling device. These characteristics finally determine the achievable baud
rate and line length.

66 www.wilke.de - +49.2405.408 55-0

Device drivers

Some common settings can be found in the following table (achievable bus
lengths are only references):

Bit rate Bustim0 Bustim1 Bt1
Tseg1

Bt1
Tseg2

Bus
length

1 Mbit 0 45h 5 4 25m

500 kBit 0 5Ch 12 5 100m

250 kBit 1 5Ch 12 5 250m

125 kBit 3 5Ch 12 5 500m

100 kBit 4 5Ch 12 5 650m

The bit rate can be specified during installation of the driver by parameters.

During the running time the Bustiming settings can be changed using User-Function-
Codes.
Note: the output buffer should be empty whilst setting Bustim0 or Bustim1 since the
internal CAN chip is temporarily in the rest mode. It is also temporarily not ready to
receive.

Example: set 100kBit acc. to above table during the running time:

PUT #CAN, #0, #UFCO_CAN_BUSTIM0, 4

PUT #CAN, #0, #UFCO_CAN_BUSTIM1, 5CH

67 www.wilke.de - +49.2405.408 55-0

Device drivers

Error Register

Both the correct receipt of a CAN message and faulty statuses on the CAN bus

trigger a Receiver-Interrupt. During the Interrupt-processing the device driver
determines whether a fault-free package has been received or whether errors have
occurred. In any case the values associated with error statuses will be refreshed and
be given a User-Function code for the next error inquiry. If further errors occur before
the error inquiry the later error code will be saved in each case.

The following error inquiries are possible:

User-Function-Code Bit(s) Meaning

UFCI_CAN_STAT 0 Receive Buffer Status: 0: empty 1: full

 1 Receive Overrun: 0: no 1: yes
Data-Overrun. Occurs if a new CAN-Message is
received although there is not enough space in
the receive area of the CAN-Chip. This does not
relate to the buffer of the device driver.

 2 Transmit Buffer: 0: blocked 1: free

 3 Send: 0: active 1: done

 4 Receive: 0: free 1: active

 5 Send: 0: free 1: active

 6 Error: 0: ok
1: one or both error counters (RXERR, TXERR)
have exceeded the value set for Error-Warning-
Limit.

 7 Bus-Status: 0: ON 1: OFF
If OFF the CAN-Hardware no longer takes part in
activities on the bus.

UFCI_CAN_RXERR 0...7 Rx-error counter. counts up with receive errors
and back down again to 0 with a correct receipt.

UFCI_CAN_TXERR 0...7 Tx-error counter. counts up with send errors and
back down again to 0 if sent correctly.

68 www.wilke.de - +49.2405.408 55-0

Device drivers

Arbitration-Lost error

The inquiry of the ALC-Register can provide more information about that bit

position at which the bus access was lost. At first the highest-order Identifier bit
appears on the CAN bus after the start bit. 10 further Identifier bits follow in the case
of a standard frame. Since the 'Extended Frames’ must be compatible with the
standard frames these 10 Identifier bits are always followed by an RTR-bit. The next bit
now decides whether this is a Standard-Frame or an 'Extended Frame’. It is called the
IDE bit, Identifier Extension. The remaining 18 Identifier bits follow a reserved bit in the
case of the 'Extended Frame’. The Arbitration-Lost-Register can follow arbitration up to
the 31st bit, i.e. up to the RTR-bit of an 'Extended Frame’.

Since all participants access the bus simultaneously, the first recessive bit which
is overwritten by a dominant bit shows the lost bus access. The bit position is hereby
a measure of the priority of the participant which prevents bus access.

Remember: The buffered value is refreshed in the DEVICE at every Interrupt. Since
the ALC register of the CAN hardware is reset when it is read, an Arbitration-Lost error
which has occurred and been registered once will be overwritten at the next correct
receipt. Single Arbitration-Lost statuses can therefore only be recorded if there is
sufficient time to read out the value from the driver. Repetitive Arbitration-Lost statuses
are recorded statistically.

69 www.wilke.de - +49.2405.408 55-0

Device drivers

RXERR receive error counter

The receive error counter is read out at every CAN-Interrupt in the DEVICE driver.
The last value can be inquired with a User-Function code. The inquiry doesn't change
the meter reading.

...

get #CAN, #0, #UFCI_CAN_RXERR, 1, rx_err

...

If the meter reading exceeds the set Error-Warning limit (standard: 96) bit 6 will

be set in the status register.

If the meter reading exceeds 127, the internal CAN chip switches to the 'Bus-Error-
Passive' mode. In this mode the CAN-hardware sends no further error telegrams but
continues to send and receive its telegrams. Error-free data telegrams on the bus
reduce the error counter again.

70 www.wilke.de - +49.2405.408 55-0

Device drivers

TXERR send error counter

The send error counter in the device driver will be read out in the event of Error-
Interrupts. The last value can be inquired with a User-Function code. The inquiry
doesn't change the meter reading.

...

get #CAN, #0, #UFCI_CAN_TXERR, 1, tx_err

...

If the meter reading exceeds the set Error-Warning limit (standard: 96) bit 6 will
be set in the status register.

If the meter reading exceeds 127, the internal CAN chip switches to the 'Bus-Error-
Passive' mode. In this mode the CAN-hardware sends no further error telegrams but
continues to send and receive its telegrams. Error-free data telegrams on the bus
reduce the error counter again.

If the meter reading exceeds 255, the CAN chip switches to the 'Bus-Off status'.
The CAN chip will recover from Bus-Off (become error active again) automatically. It will
start the recovering sequence (128 occurrences of 11 consecutive recessive bits
monitored on CANRX) automatically after it has entered Bus-Off state.

71 www.wilke.de - +49.2405.408 55-0

Device drivers

Receive filter with Code and Mask

The set Access-Code together with the Access-Filter determines which CAN-
messages are received. The Access-Mask sets bits to 'don’t care' if necessary. The bits
of the received Identifiers which are not 'don’t care’ must correspond with the code so
that the message can be received.

There now follow instructions for:

• Set Access-Code and Access-Mask
• Standard-Frame with Single filter configuration
• Extended Frame with Single filter configuration
• Standard-Frame with Dual filter configuration
• Extended Frame with Dual filter configuration

The received CAN-message can be present as a Standard-Frame or as an
Extended-Frame.

72 www.wilke.de - +49.2405.408 55-0

Device drivers

Set Access-Code and Access-Mask

Access-Code and Access-Mask are registers and part of the CAN hardware and are
set during installation of the device driver. If no parameters are specified Access-Code
is set to 0 and Access-Mask to 0FFFFFFFFh so that all messages pass through the filter.

The code and the mask can be seen as simple bit patterns or as numbers. For
example, a LONG number is suitable to store the bits of the Access-Code or the Access-
Mask . One problem here is that the CAN number starts with the highest-order byte, the
Tiger-BASIC LONG number however with the lowest-order:

CAN-Access-Code and Mask MSB LSB

Tiger-BASIC® LONG number LSB MSB

In addition the 11 bits and/or 29 bits are flush left in the 32 bit for the Identifier
depending on the frame type. Numbers start, however, on the right with the lowest bit
and have no 'don’t care’ bit to the right of this. There can be a zero to the left of a
number, but this is not important.

If you therefore wish to see the Identifier from the Access-Code as a number the
bytes first have to be mirrored and

• the value of the Access-Code shifted 21 bits (5+16) to the right with an 11-
Bit Identifier

• the value of the Access-Code shifted 3 bits to the right with a 29-Bit
Identifier.

73 www.wilke.de - +49.2405.408 55-0

Device drivers

CAN-Access-Code and Mask MSB LSB

Mirror bytes:

11-Bit-ID

id = byte_mirr (id, 4)

LONG intermediate result LSB MSB

shift right to LSB:

id shr 21

Tiger-BASIC® LONG number LSB MSB

Conversely: if you hav110e a number and want to store it in a CAN register Access-
Code or Access-Mask then

• the bits in the number first have to be moved to the left
• then the bytes in the number mirrored

Remember that the Function NTOS$ can mirror the bytes by specifying a negative
value as an argument for the number of bytes:

• msg$ = ntos$ (msg$, 1, -2, t_id) inserts an 11-bit Identifier present as a
WORD number with the ID-bits in the correct position into a string and hereby
mirrors the bytes.

• msg$ = ntos$ (msg$, 1, -4, t_id) does the same for a 29-bit Identifier, which
is present as a LONG number with the ID-bits at the correct position.

The sequence does not change in a string:

id$ = “<1Fh><AAh><BBh><33h>“

or

id$ = “1F AA BB 33“%

Step the following example program to understand these conditions in the
'Monitored expressions'.

74 www.wilke.de - +49.2405.408 55-0

Device drivers

Program example:

'---

'Name: CAN_SET_FILTER.TIG

'sets filter configuration

'demostrates how to set accress code and access mask

'in different variations

'only one CAN-Tiger is necessary as nothing is sent or received

'Please use the command 'Watches' from the menu 'View'

'---

user var strict 'check var declarations

#INCLUDE UFUNC3.INC 'User Function Codes

#INCLUDE DEFINE_A.INC 'general symbol definitions

#INCLUDE CAN.INC 'CAN definitions

LONG ac_code, ac_mask

STRING id$

'---

TASK MAIN

 install_device #LCD, "LCD1.TDD" 'install LCD-driver

 install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver

 "12 34 56 78 & 'access code

 EF FF FE FF & 'access mask

 10 45 & 'bustim1, bustim2

 08 1A"% 'single filter mode, outctrl

 using "UH<8><8> 0 0 0 4 4" 'to display ID in whole program

'show access code und access mask after installation

 get #CAN, #0, #UFCI_CAN_CODE, 0, ac_code

 ac_code = byte_mirr (ac_code, 4) 'byte order mirrored for LONG

 print_using #LCD, "<1>ac_code:";ac_code

 get #CAN, #0, #UFCI_CAN_MASK, 0, ac_mask 'and read

 ac_mask = byte_mirr (ac_mask, 4) 'byte order mirrored for LONG

 print_using #LCD, "ac_mask:";ac_mask

'the same lines are in show_codemask

 wait_duration 1000

'see byte order ('watches' id$ and ac_code)

 get #CAN, #0, #UFCI_CAN_CODE, 4, id$ 'test: read access code

 get #CAN, #0, #UFCI_CAN_CODE, 0, ac_code 'and read into a LONG

 wait_duration 1000

 ac_code = byte_mirr ((1FFFFFFFFh shl 3), 4)'biggest access code

 put #CAN, #0, #UFCO_CAN_CODE, ac_code 'and set

 call show_codemask 'and display

 wait_duration 1000

'this is the same:

 id$ = "FF FF FF F8"% '1FFFFFFF left bound

 put #CAN, #0, #UFCO_CAN_CODE, id$ 'and set

 call show_codemask 'and display

 wait_duration 1000

'set new code for the following read test

75 www.wilke.de - +49.2405.408 55-0

Device drivers

 ac_code = byte_mirr ((12345678h shl 3), 4) 'becomes 0C0B3A291h

 put #CAN, #0, #UFCO_CAN_CODE, ac_code 'and set

 call show_codemask 'and display

 wait_duration 1000

'step from here

 get #CAN, #0, #UFCI_CAN_CODE, 0, ac_code 'see byte order

 ac_code = byte_mirr (ac_code, 4) 'after each step

 ac_code = ac_code shr 3

 print_using #LCD, "<1>ac_code:";ac_code

END

'---

'displays access code and access mask an

'---

SUB show_codemask

 get #CAN, #0, #UFCI_CAN_CODE, 0, ac_code

 ac_code = byte_mirr (ac_code, 4) 'byte order mirrored for LONG

 print_using #LCD, "<1>ac_code:";ac_code

 get #CAN, #0, #UFCI_CAN_MASK, 0, ac_mask 'and read

 ac_mask = byte_mirr (ac_mask, 4) 'byte order mirrored for LONG

 print_using #LCD, "ac_mask:";ac_mask

END

76 www.wilke.de - +49.2405.408 55-0

Device drivers

Standard-Frame with Single-Filter configuration

In the 'single filter’ mode with a Standard-Frame, all ID-bits are passed through the
Access filter and compared with the set code. Only the ID Bits are compared, but NOT
the RTR Bit or the data Bytes.

In the example program CAN_FILTER_SS.TIG the Access-Code is set to 4EE0 0000
after installation. The mask determine which bits of the set code are relevant. The value
F11F FFFF has a total of 6 '0'-bits within the area of the Identifier (the 11 bit left-
adjusted) which indicate that these bits in the message on the bus must correspond
with the Access-Code so that the message will be received. The test shows that those
values with an 'E' or 'F' in the second position and an 'E' in the third position come
through. Thus, exactly those messages whose bits match the relevant bits of the
Access-Code will be received

The illustration shows the Access-Code, Access-Mask and an Identifier as an
example. Only the ID-bits are shown. The other bits in the example are 'don’t care’ any
way:

 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

Code: 4EEh 0 1 0 0 1 1 1 0 1 1 1

Mask: F11h 1 1 1 1 0 0 0 1 0 0 0

x=not
relevant

x x x x 1 1 1 x 1 1 1

ID: 0Eeh 0 0 0 0 1 1 1 0 1 1 1

ID: 7Feh 0 1 1 1 1 1 1 1 1 1 1

 D
B

2
.0

 D
B

2
.1

 D
B

2
.2

 D
B

2
.3

 D
B

2
.4

 D
B

2
.5

 D
B

2
.6

 D
B

2
.7

 D
B

1
.0

 D
B

1
.1

 D
B

1
.2

 D
B

1
.3

 D
B

1
.4

 D
B

1
.5

 D
B

1
.6

 D
B

1
.7

 R
T

R

 ID
0

 ID
1

 ID
2

 ID
3

 ID
4

 ID
5

 ID
6

 ID
7

 ID
8

 ID
9

 ID
1

0

Code Byte 3 LSB

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

MSB Code Byte 0

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

Code Byte 1

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

Code Byte 2

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

unuse
d Mask Byte 3 LSB

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

MSB Mask Byte 0

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

Mask Byte 1

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

Mask Byte 2

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

unuse
d

77 www.wilke.de - +49.2405.408 55-0

Device drivers

Program example:

'---

'Name: CAN_Filter_SS.TIG

'single filter configuration

'sends standard frames with different IDs for filter test

'receives filtered CAN messages and displays on LCD

'knows standard and extended frame

'connect a second CAN-Tiger with the same program

'---

user var strict 'check var declarations

#INCLUDE UFUNC3.INC 'User Function Codes

#INCLUDE DEFINE_A.INC 'general symbol definitions

#INCLUDE CAN.INC 'CAN definitions

BYTE frameformat, msg_len, can_stat

LONG ac_code, ac_mask

LONG r_id 'Rx ID

STRING id$(4), msg$(13), data$(8)

'---

TASK MAIN

 BYTE ever 'for endless loop

 WORD ibu_fill 'input buffer fill level

 install_device #LCD, "LCD1.TDD" 'install LCD-driver

 install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver

 "4E E0 00 00 & 'access code

 F1 1F FF FF & 'access mask

 10 45 & 'bustim1, bustim2

 08 1A"% 'single filter mode, outctrl

'code and mask are set like this now:

'01001110111 RTR --data-- --data-- code (relevant 11 bits)

'11110001000 1 11111111 11111111 mask (bits 0 count, 1=don't care)

'thus messages with the following bit pattern will pass:

'01001110111 RTR --data-- --data-- code (relevant 11 bits)

'xxxx111x111 x xxxxxxxx xxxxxxxx

'received frames are 0EEh, 0FEh, 1EEh, 1FEh, etc

 using "UH<8><8> 0 0 0 4 4"

 get #CAN, #0, #UFCI_CAN_CODE, 0, ac_code

 ac_code = byte_mirr (ac_code, 4) 'byte order mirrored for LONG

 print_using #LCD, "<1>ac_code:";ac_code

 get #CAN, #0, #UFCI_CAN_MASK, 0, ac_mask 'and read

 ac_mask = byte_mirr (ac_mask, 4) 'byte order mirrored for LONG

 print_using #LCD, "ac_mask:";ac_mask

 run_task generate_frames 'generates incrementing IDs

'display now IDs of received frames

 for ever = 0 to 0 step 0 'endless loop

 get #CAN, #0, #UFCI_IBU_FILL, 0, ibu_fill

 if ibu_fill > 2 then 'if at least one message

 get #CAN, #0, 1, frameformat 'get frame info byte

 msg_len = frameformat bitand 1111b 'length

78 www.wilke.de - +49.2405.408 55-0

Device drivers

 if frameformat bitand 80h = 0 then 'if standard frame

 get #CAN, #0, CAN_ID11_LEN, r_id 'get ID bytes

 r_id = byte_mirr (r_id, 2)

 disable_tsw

 using "UH<4><4> 0 0 0 0 4"

 else 'else it is extended frame

 get #CAN, #0, CAN_ID29_LEN, r_id'and no SLIO message

 r_id = byte_mirr (r_id, 4)

 disable_tsw

 using "UH<8><8> 0 0 0 4 4"

 endif

 print_using #LCD, "<1Bh>A<0><2><0F0h>ID rcvd:";r_id;

 enable_tsw

 if msg_len > 0 then 'if contains data

 get #CAN, #0, msg_len, data$ 'get them out of the buffer

 endif

 endif

' HEX format for one byte

 next

END

'---

'generates standard frames with incrementing ID

'---

TASK generate_frames

 BYTE ever 'for endless loop

 WORD obu_free 'output buffer free space

 LONG t_id 'Tx ID

 STRING msg$(13)

 t_id = 0 'standard identifier

 for ever = 0 to 0 step 0 'endless loop

 get #CAN, #0, #UFCI_OBU_FREE, 0, obu_free

 if obu_free > 13 then

'frame info 0 = standard, 2 ID bytes, no data

 msg$ = "<0><0><0>"

 msg$ = ntos$ (msg$, 1, -2, t_id) 'insert ID high byte 1st

 put #CAN, #0, msg$ 'send a standard frame message

 disable_tsw

 using "UH<4><4> 0 0 0 0 4" 'to display ID

 print_using #LCD, "<1Bh>A<0><3><0F0h>ID sent:";t_id;

 enable_tsw

 'this counts up t_id by 1

 'when considering the shift by 5

 'of the extended ID

 t_id = t_id + 100000b 'next ID

 t_id = t_id bitand 0FFFFh 'remain with standard fraem ID

 endif

 wait_duration 30

 next

END

79 www.wilke.de - +49.2405.408 55-0

Device drivers

Extended Frame with Single-Filter configuration

With an Extended-Frame all ID-bits are passed through the filter. The 3 lowest bits
should be masked 'don’t care’ for reasons of compatibility.

 R
T

R

 ID
0

 ID
1

 ID
2

 ID
3

 ID
4

 ID
5

 ID
6

 ID
7

 ID
8

 ID
9

 ID
1

0

 ID
1

1

 ID
1

2

 ID
1

3

 ID
1

4

 ID
1

5

 ID
1

6

 ID
1

7

 ID
1

8

 ID
1

9

 ID
2

0

 ID
2

1

 ID
2

2

 ID
2

3

 ID
2

4

 ID
2

5

 ID
2

6

 ID
2

7

 ID
2

8

Code Byte 3 LSB

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

MSB Code Byte 0

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

Code Byte 1

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

Code Byte 2

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

unuse
d Mask Byte 3 LSB

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

MSB Mask Byte 0

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

Mask Byte 1

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

Mask Byte 2

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

unuse
d

80 www.wilke.de - +49.2405.408 55-0

Device drivers

Program example:

'---

'Name: CAN_Filter_ES.TIG

'single filter configuration

'sends extended frames with different IDs for filter test

'receives filtered CAN messages and displays on LCD

'knows standard and extended frame

'connect a second CAN-Tiger with the same program

'---

user var strict 'check var declarations

#INCLUDE UFUNC3.INC 'User Function Codes

#INCLUDE DEFINE_A.INC 'general symbol definitions

#INCLUDE CAN.INC 'CAN definitions

BYTE frameformat, msg_len, can_stat

LONG ac_code, ac_mask

LONG r_id

STRING id$(4), msg$(13), data$(8)

'---

TASK MAIN

 BYTE ever 'for endless loop

 WORD ibu_fill 'input buffer fill level

 install_device #LCD, "LCD1.TDD" 'install LCD-driver

 install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver

 "6D 55 D9 98 & 'access code

 EF FF FE FF & 'access mask

 10 45 & 'bustim1, bustim2

 08 1A"% 'single filter mode, outctrl

 using "UH<8><8> 0 0 0 4 4" 'to display ID in whole program

 get #CAN, #0, #UFCI_CAN_CODE, 4, id$ 'test: read access code

 'check byte order with View - Watches

 get #CAN, #0, #UFCI_CAN_CODE, 0, ac_code

 ac_code = byte_mirr (ac_code, 4) 'byte order mirrored for LONG

 print_using #LCD, "<1>ac_code:";ac_code

 wait_duration 2000

'code and mask will be set for extended frames like this now:

'87654321 09876543 21098765 43210Rxx RTR, 2x don't care

'01101101 01010101 11011001 10011000 code (29 relevant bits+RTR)

'11101111 11111111 11111110 11111111 mask (0-bits are relevant)

'RTR and not used bits don't care

'thus messages with the following bit pattern will pass:

'xxx0xxxx xxxxxxxx xxxxxxx1 xxxxxxxx

'bit 5 must be set and bit 25 must be 0

 ac_code = byte_mirr ((0DAABB33h shl 3), 4) ' new access code

 put #CAN, #0, #UFCO_CAN_CODE, ac_code 'and set

'this is the same:

' id$ = "FD 55 D9 98"% ' new access code

' put #CAN, #0, #UFCO_CAN_CODE, id$ ' and set

81 www.wilke.de - +49.2405.408 55-0

Device drivers

'check again byte order with View - Watches

 get #CAN, #0, #UFCI_CAN_CODE, 4, id$ 'read access code into string

'or read like this, but must mirror for LONG

 get #CAN, #0, #UFCI_CAN_CODE, 0, ac_code 'and read into a LONG

 ac_code = byte_mirr (ac_code, 4)

 print_using #LCD, "<1>ac_code:";ac_code

 wait_duration 1000

 ac_mask = byte_mirr (0EFFFFEFFh, 4) 'access mask

 put #CAN, #0, #UFCO_CAN_MASK, ac_mask 'set

 get #CAN, #0, #UFCI_CAN_MASK, 0, ac_mask 'and read

 ac_mask = byte_mirr (ac_mask, 4) 'byte order mirrored for LONG

 print_using #LCD, "ac_mask:";ac_mask

 run_task generate_frames 'generates incrementing IDs

'display now IDs of received frames

 for ever = 0 to 0 step 0 'endless loop

 get #CAN, #0, #UFCI_IBU_FILL, 0, ibu_fill

 if ibu_fill > 2 then 'if at least one message

 get #CAN, #0, 1, frameformat 'get frame info byte

 msg_len = frameformat bitand 1111b 'length

 if frameformat bitand 80h = 0 then 'if standard frame

 get #CAN, #0, CAN_ID11_LEN, r_id 'get ID bytes

 r_id = byte_mirr (r_id, 2)

 r_id = r_id shr 5

 else 'else it is extended frame

 get #CAN, #0, CAN_ID29_LEN, r_id'and no SLIO message

 r_id = byte_mirr (r_id, 4)

 r_id = r_id shr 3

 if msg_len > 0 then 'if contains data

 get #CAN, #0, msg_len, data$ 'get them and free the buffer

 endif

 endif

 disable_tsw

 using "UH<8><8> 0 0 0 4 4" ' display ID

 print_using #LCD, "<1Bh>A<0><2><0F0h>ID rcvd:";r_id;

 enable_tsw

 if msg_len > 0 then 'if contains data

 get #CAN, #0, msg_len, data$ 'get them out of the buffer

 endif

 endif

' HEX format for one byte

 next

END

'---

'generates extended frames with incrementing ID

'---

TASK generate_frames

 BYTE ever

 WORD obu_free

 LONG t_id

 STRING msg$(13)

 using "UH<8><8> 0 0 0 4 4" 'to display ID in whole program

82 www.wilke.de - +49.2405.408 55-0

Device drivers

 t_id = 0AABB00h shl 3 'extended identifier

 for ever = 0 to 0 step 0 'endless loop

 get #CAN, #0, #UFCI_OBU_FREE, 0, obu_free

 if obu_free > 13 then

'frame info 80h = extended, 4 ID bytes, no data

 msg$ = "<80h><0><0><0><0>"

 msg$ = ntos$ (msg$, 1, -4, t_id) 'insert ID high byte 1st

 put #CAN, #0, msg$ 'send a standard frame message

 print_using #LCD, "<1Bh>A<0><3><0F0h>ID sent:";t_id shr 3;

 'this counts by 1 in bytes 0 and 3

 'when considering the shift by 3

 'of the extended ID

 t_id = t_id + 08000008h 'next ID

 endif

 wait_duration 50

 next

END

83 www.wilke.de - +49.2405.408 55-0

Device drivers

Setting of more access codes in standard format

Secondary addresses 3…15 can be used for additional access codes. If the AME Bit is
set, the global acceptance filter is used for filtering, otherwise no filter is used.

Secondary address 16 can be used for one more additional access code. If The AME
Bit is set, the local acceptance filter is used for filtering, otherwise no filter is used.

Sec.-Adr. Function

3 Sets one more access code (global mask)

4 Sets one more access code (global mask)

5 Sets one more access code (global mask)

6 Sets one more access code (global mask)

7 Sets one more access code (global mask)

8 Sets one more access code (global mask)

9 Sets one more access code (global mask)

10 Sets one more access code (global mask)

11 Sets one more access code (global mask)

12 Sets one more access code (global mask)

13 Sets one more access code (global mask)

14 Sets one more access code (global mask)

15 Sets one more access code (global mask)

16 Sets one more access code (local mask)

PUT #CAN, #CH, “<ID0><ID1><ID2><ID3>”

<CH> contains the channel number 3…16.

<ID0> contains the identifiers 3…10.

<ID1> contains the identifiers 0…2.

<ID2> is zero.

<ID3> contains acceptance mask enable bit and identifier extension bit.

 slCode$ = "10 00 00 00"% ' only ID = 80H

 PUT #CAN, #3, slCode$ ' set code (without any mask)

84 www.wilke.de - +49.2405.408 55-0

Device drivers

85 www.wilke.de - +49.2405.408 55-0

Device drivers

Setting of the local acceptance mask in standard format

The local acceptance mask is used only for access code 16. Channel-16 is a special
access code with its own local acceptance mask. If no other code matches, the
incoming CAN message is compared with channel 16 Code and the local acceptance
mask (NOT the global acceptance mask)!

PUT #CAN, #0, #UFCO_CAN_LAM, “<M0><M1><M2><M3>”

<M0> contains the mask bits for identifiers 3…10.

<M1> contains the mask bits for identifiers 0…2.

<M2> dummy data (zero).

<M3> dummy data (zero).

 slCode$ = "FF FF C0 00"% ' set mask

 PUT #CAN, #0, #UFCO_CAN_LAM, slCode$ ' set local acceptance mask

 slCode$ = "00 00 3F FE"% ' all IDs = xxxx7FFH

 PUT #CAN, #16, slCode$ ' set code (with local mask)

86 www.wilke.de - +49.2405.408 55-0

Device drivers

87 www.wilke.de - +49.2405.408 55-0

Device drivers

Setting of more access codes in extended format

Secondary addresses 3…15 can be used for additional access codes. If the AME Bit is
set, the global acceptance filter is used for filtering, otherwise no filter is used.

Secondary address 16 can be used for one more additional access code. If The AME
Bit is set, the local acceptance filter is used for filtering, otherwise no filter is used.

Sec.-Adr. Function

3 Sets one more access code (global mask)

4 Sets one more access code (global mask)

5 Sets one more access code (global mask)

6 Sets one more access code (global mask)

7 Sets one more access code (global mask)

8 Sets one more access code (global mask)

9 Sets one more access code (global mask)

10 Sets one more access code (global mask)

11 Sets one more access code (global mask)

12 Sets one more access code (global mask)

13 Sets one more access code (global mask)

14 Sets one more access code (global mask)

15 Sets one more access code (global mask)

16 Sets one more access code (local mask)

PUT #CAN, #CH, “<ID0><ID1><ID2><ID3>”

<CH> contains the channel number 3…16.

<ID0> contains the identifiers 21…28.

<ID1> contains the identifiers 13…20.

<ID2> contains the identifiers 5…12.

<ID3> contains the identifiers 0…4, the acceptance mask enable bit and
identifier extension bit.

88 www.wilke.de - +49.2405.408 55-0

Device drivers

 slCode$ = "00 00 00 0C"% ' only ID = 1H (extended format)

 PUT #CAN, #3, slCode$ ' set code (without any mask)

 slCode$ = "00 00 3F FE"% ' all IDs = xxxx7FFH (extended format)

 PUT #CAN, #4, slCode$ ' set code (with global mask)

89 www.wilke.de - +49.2405.408 55-0

Device drivers

90 www.wilke.de - +49.2405.408 55-0

Device drivers

Setting of the local acceptance mask in extended format

The local acceptance mask is used only for access code 16. Channel-16 is a special
access code with its own local acceptance mask. If no other code matches, the
incoming CAN message is compared with channel 16 Code and the local acceptance
mask (NOT the global acceptance mask)!

PUT #CAN, #0, #UFCO_CAN_LAM, “<M0><M1><M2><M3>”

<M0> contains the mask bits for identifiers 21…28.

<M1> contains the mask bits for identifiers 13…20.

<M2> contains the mask bits for identifiers 5…12.

<M3> contains the mask bits for identifiers 0…4.

91 www.wilke.de - +49.2405.408 55-0

Device drivers

92 www.wilke.de - +49.2405.408 55-0

Device drivers

Sending CAN messages

The CAN device driver supports the following methods of dispatch:

Send single messages which contain 0...8 characters and whose Identifiers can
be specified individually as required. Every CAN message is output with a PUT or Print
instruction. With the Print instruction you must remember that the version will be
formatted and any additional bytes (CR, LF) appended.

Send data, which may also contain more the 8 characters. The device driver
creates as many CAN data packets from this are needed to dispatch the complete
amount and uses the Identifier specified at the start of the string. The data are
transferred to the buffer with a single PUT or PRINT instruction.

Reply to a 'Remote Transmission Request’ by providing a message especially for
this purpose in the device driver. The message provided will be automatically sent by
the driver if an RTR-Message is received.

The CAN device driver expect a CAN message in the predefined format as an
argument. The first byte will be interpreted as a Frame-Format byte . The next 2 or
4 bytes are the message's Identifier depending on the Frame-format. A typical CAN
output as a Standard Frame looks as follows:

PUT #CAN, #0, “<Frame-Format><ID1><ID2>data”

<Frame-Format> contains information that this is a Standard-Frame.

<ID1> contains the upper bits 3...10 of the Identifier.

<ID2> contains the lower bits 0...2 of the Identifier at the bit positions
5, 6 and 7. The remaining bits in this byte are insignificant.

data are data bytes which are transferred in the message.
0...8 data bytes are possible.

With 0...8 data bytes this generates a CAN message. If more than 8 data bytes are
contained the device driver packs the data into several CAN messages and uses the
same Identifier.

PUT #CAN, #0, “<Frame-Format><ID1><ID2>abcdefghijklmnopqrs”

becomes the following CAN messages:

“<Frame-Format><ID1><ID2>abcdefgh”

“<Frame-Format><ID1><ID2>ijklmnop”

“<Frame-Format><ID1><ID2>qrs”

93 www.wilke.de - +49.2405.408 55-0

Device drivers

If the data are sent via the secondary address 1 the RTR-bit will be set in the
message and thus a 'Remote Transmission Request’ produced.

A single message with a maximum of 8 data bytes at the secondary address 2
leaves a response which will be sent when the device driver itself receives a 'Remote
transmission Request’.

Sec.-Adr. Function

0 Normal data dispatch

1 Data dispatch with 'Remote transmission Request'

2 Deposit a response message which will be sent when the device
driver itself receives a 'Remote Transmission Request’.

94 www.wilke.de - +49.2405.408 55-0

Device drivers

The following program shows a simple send example for standard frame CAN-
messages.

Program example:

'---

'Name: CAN_TX_STANDARD.TIG

'sends 'the quick brown fox' via CAN in standard frames

'connect a receiving CAN device, e.g. a Tiger with CAN_RX.TIG

'---

user var strict 'check var declarations

#INCLUDE UFUNC3.INC 'User Function Codes

#INCLUDE DEFINE_A.INC 'general symbol definitions

#INCLUDE CAN.INC 'CAN definitions

'---

TASK MAIN

 BYTE ever, i_msg, can_stat

 WORD obu_free 'output buffer space

 WORD t_id 'transmit ID

 STRING data$, msg$(11)

 install_device #LCD, "LCD1.TDD" 'install LCD-driver

 install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver

 "50 A0 00 00 & 'access code

 FF FF FF FF & 'access mask

 10 45 & 'bustim1, bustim2

 08 1A"% 'single filter mode, outctrl

 data$ = "the quick brown fox jumps over the lazy dog"

 i_msg = 0 'index for running text

 t_id = 155h shl 5 'standard identifier

 for ever = 0 to 0 step 0 'endless loop

 get #CAN, #0, #UFCI_OBU_FREE, 0, obu_free

 print #LCD, "<1Bh>A<0><1><0F0h>OBU_FREE:";obu_free;" ";

 if obu_free > 11 then

 msg$ = & 'frame info 0 = standard, 2 ID bytes, data

 "<0><0><0>" + mid$ (data$, i_msg, 8)'nfo, ID

 msg$ = ntos$ (msg$, 1, -2, t_id) 'insert ID high byte 1st

 print #CAN, #0, msg$; 'send a standard frame message

 i_msg = i_msg + 1 'advance string index

 if i_msg > len(data$)-8 then 'check limit

 i_msg = 0

 endif

 endif 'check CAN state

 get #CAN, #0, #UFCI_CAN_STAT, 0, can_stat

 using "UH<2><2> 0 0 0 0 2" 'HEX format for a byte

 print_using #LCD, "<1Bh>A<0><0><0F0h>CAN-State:";can_stat;

 wait_duration 200

 next

END

95 www.wilke.de - +49.2405.408 55-0

Device drivers

The following program shows a simple send example for extended frame CAN-
messages.

Program example:

'---

'Name: CAN_TXEXTENDED.TIG

'sends 'the quick brown fox' via CAN in extended frames

'connect a receiving CAN device, e.g. a CAN-Tiger

'---

user var strict 'check var declarations

#INCLUDE UFUNC3.INC 'User Function Codes

#INCLUDE DEFINE_A.INC 'general symbol definitions

#INCLUDE CAN.INC 'CAN definitions

'---

TASK MAIN

 BYTE ever, i_msg, can_stat

 WORD obu_free 'output buffer space

 LONG t_id 'extended ID 4 bytes

 STRING data$, msg$(13)

 install_device #LCD, "LCD1.TDD" 'install LCD-driver

 install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver

 "50 A0 00 00 & 'access code

 FF FF FF FF & 'access mask

 10 45 & 'bustim1, bustim2

 08 1A"% 'single filter mode, outctrl

 data$ = "the quick brown fox jumps over the lazy dog"

 i_msg = 0 'index for running text

 t_id = 01733F055h shl 3 'extended identifier

 for ever = 0 to 0 step 0 'endless loop

 get #CAN, #0, #UFCI_OBU_FREE, 0, obu_free

 print #LCD, "<1Bh>A<0><1><0F0h>OBU_FREE:";obu_free;" ";

 if obu_free > 13 then

 msg$ = & 'frame info 80h = exetended, 4 ID bytes, data

 "<80h><0><0><0><0>" + mid$ (data$, i_msg, 8)

 msg$ = ntos$ (msg$, 1, -4, t_id) 'insert ID high byte 1st

 print #CAN, #0, msg$; 'send an extended frame message

 i_msg = i_msg + 1 'advance string index

 if i_msg > len(data$)-8 then ' check limit

 i_msg = 0

 endif

 endif 'check CAN state

 get #CAN, #0, #UFCI_CAN_STAT, 0, can_stat

 using "UH<2><2> 0 0 0 0 2" 'HEX format for a byte

 print_using #LCD, "<1Bh>A<0><0><0F0h>CAN-State:";can_stat;

 wait_duration 200

 next

END

96 www.wilke.de - +49.2405.408 55-0

Device drivers

Receive CAN messages

The CAN device driver receives CAN messages and put these in the receive buffer.
Reading out the receive buffer with the CAN device driver is a special process and
differs from reading out other buffers (e.g. of the serial or parallel driver), since here
the messages in the buffer can contain further information in addition to the data. The
messages will always be read completely and processed according to the message
type:

Two read modes read differently from the secondary addresses 0 and 1:

Sec.Adr.

0 The bytes in the CAN message will be read as they are in the buffer,
including Frame-Format and ID-bytes.

1 Only data bytes will be read. Frame-Format and ID-bytes will be
ignored. The length information of partially read CAN messages will
be automatically corrected in the buffer .

Caution: the CAN-message must be read completely from the secondary address 0
since otherwise the next read operation will not start with the Frame-Info byte of the
next CAN message.

Single messages containing 0...8 characters and whose frame format ID and
Identifier precede the data bytes are read out via the secondary address 0. The Frame-
Info byte will at first be read to determine whether this is a 'Standard-Frame’ or an
'extended Frame’ and how many data bytes are contained therein. The ID-bytes which
indicate the application-specific type of message will then be read. The data bytes will
then be read in.

The example program CAN_RX1.TIG reads the received messages from the buffer,
distinguishes thereby between standard frames and extended frames and shows these
in a hexadecimal form.

97 www.wilke.de - +49.2405.408 55-0

Device drivers

Program example:

user_var_strict

#INCLUDE UFUNC3.INC ' User Function Codes

#INCLUDE DEFINE_A.INC ' allg. Symbol-Definitionen

#INCLUDE CAN.INC ' CAN-Definitionen

task main

 BYTE frameformat, msg_len

 WORD ibu_fill

 LONG ac_code, ac_mask, r_id

 string slCode$(4), data$(8)

 INSTALL DEVICE #SER, "SER1B_K4.TD2", &

 BD_38_400,DP_8N,NEIN,BD_38_400,DP_8N,NEIN

 install_device #CAN, "CAN1_K8.TD2", & ' install CAN-driver

 "00 00 00 00 & ' access code

 FF FF FF FF & ' access mask

 01 5C & ' bustim1, bustim2

 00 1A"% ' dual filter mode, outctrl

 Print #SER,#0, "Can Receive All!"

 while 1 = 1

 get #CAN, #0, #UFCI_IBU_FILL, 0, ibu_fill

 if ibu_fill > 2 then ' if there is a message

 get #CAN, #0, 1, frameformat ' get Frame-Info-Byte

 msg_len = frameformat bitand 1111b ' length

 if frameformat bitand 80h = 0 then ' if Standard-Frame

 get #CAN, #0, CAN_ID11_LEN, r_id ' get ID-Bytes

 r_id = byte_mirr (r_id, 2) '

 r_id = r_id SHR 5 '

 using "UH<8><3> 0 0 0 0 3" ' fuer ID Anzeige

 else ' it is extended frame

 get #CAN, #0, CAN_ID29_LEN, r_id '

 r_id = byte_mirr (r_id, 4) '

 r_id = r_id SHR 3 '

 using "UH<8><8> 0 0 0 4 4" ' fuer ID Anzeige

 endif

 print_using #SER, #0, "ID:"; r_id; ", "; ' show ID

 using "UH<1><1> 0 0 0 0 1" ' zeige Laenge an

 print_using #SER, #0, "DLC:";msg_len ; ", ";

 if msg_len > 0 then ' if there are data bytes

 get #CAN, #0, msg_len, data$ ' read out data

 endif

 if bit(frameformat, 6) = 1 then ' RTR Message?

 data$ = ""

 print #SER, #0, "RTR Message";

 endif

 print #SER, #0, data$

 endif

 endwhile

end

98 www.wilke.de - +49.2405.408 55-0

Device drivers

Data is read out via the secondary address 1 irrespective of the Frame-Format and
Identifier bytes. The device driver only reads the data bytes and ignores the Identifier.
Incompletely read CAN messages keep their frame format and ID byte, the length is
corrected accordingly by the driver so that the next read operation again finds an intact
CAN-message in the buffer.

Program example:

'---

'Name: CAN_RX2.TIG

'receives CAN data and displays them, ignores IDs

'displays data as text (send ASCII only)

'displays also status

'connect a sending CAN device, e.g. a Tiger with CAN_TXS.TIG

'---

user var strict 'check var declarations

#INCLUDE UFUNC3.INC 'User Function Codes

#INCLUDE DEFINE_A.INC 'general symbol definitions

#INCLUDE CAN.INC 'CAN definitions

'---

TASK MAIN

 BYTE ever, frameformat, msg_len, can_stat

 WORD ibu_fill 'output buffer fill level

 LONG r_id

 STRING id$(4), data$, line$

 install_device #LCD, "LCD1.TDD" 'install LCD-driver

 install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver

 "50 A0 00 00 & 'access code

 FF FF FF FF & 'access mask

 10 45 & 'bustim1, bustim2

 08 1A"% 'single filter mode, outctrl

 print #LCD, "<1Bh>A<0><0><0F0h>STAT LEN ID";

 line$ = ""

 for ever = 0 to 0 step 0 'endless loop

 get #CAN, #0, #UFCI_IBU_FILL, 0, ibu_fill

 print #LCD, "<1Bh>A<0><3><0F0h>IBU_FILL:";ibu_fill;" ";

 get #CAN, #1, 0, data$

 if data$ <> "" then

 line$ = line$ + data$

 if len(line$) > 20 then 'if longer than LCD line

 line$ = right$ (line$, 20)

 endif

 print #LCD, "<1Bh>A<0><2><0F0h>";line$;

 endif

 get #CAN, #0, #UFCI_CAN_STAT, 0, can_stat

 using "UH<2><2> 0 0 0 0 2" 'HEX format for a byte

 print_using #LCD, "<1Bh>A<1><1><0F0h>";can_stat;

 next

END

99 www.wilke.de - +49.2405.408 55-0

Device drivers

Receipt of a 'Remote Transmission Request’ leads to a message which has been
especially provided for this purpose in the device driver being sent. The received CAN
message would otherwise be treated as a CAN message without Remote Transmission
Request’.

Program example:

'---

'Name: CAN_RTR.TIG

'prepares a RTR-message and sends then 2 different messages

'in a loop.

'RTR message and loop message have different IDs

'connect a CAN device which uses a RTR message to get the

'response, e.g. a CAN Tiger with CAN_RTRS.TIG

'---

user var strict 'check var declarations

#INCLUDE UFUNC3.INC 'User Function Codes

#INCLUDE DEFINE_A.INC 'general symbol definitions

#INCLUDE CAN.INC 'CAN definitions

'---

TASK MAIN

 BYTE ever 'endless loop

 STRING rtr_msg$(13)

 install_device #LCD, "LCD1.TDD" 'install LCD-driver

 install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver

 "50 A0 00 00 & 'access code

 FF FF FF FF & 'access mask

 10 45 & 'bustim1, bustim2

 08 1A"% 'single filter mode, outctrl

 rtr_msg$ = "<0><0FFh><0E0h>RTR-resp"'RTR response string as standard frame

 put #CAN, #2, rtr_msg$ 'prepare device driver

 print #LCD, "RTR-message prepared"

 'now do something else

 for ever = 0 to 0 step 0 'endless loop

 wait_duration 3000

 put #CAN, #0, "<0><0FFh><0C0h>abcdefgh"

 wait_duration 3000

 put #CAN, #0, "<0><0FFh><080h>ijklmnop"

 next

END

100 www.wilke.de - +49.2405.408 55-0

Device drivers

CAN RTR messages

'Remote Transmission Request’ messages are sent with secondary address 1. A
RTR message never contains data bytes. In some cases the data length (DLC) contains
the number of bytes that are required from the data frame. In this case you have to add
dummy data to your message. The length of the dummy data specifies the data length
(DLC) bits. Every CAN message is output with a PUT or Print instruction. With the Print
instruction you must remember that the version will be formatted and any additional
bytes (CR, LF) appended.

Receiving a 'Remote Transmission Request’ messages is the same as receiving all
other CAN messages. If the RTR bit is set and DLC is greater than 0, you have to get the
data from the CAN Buffer. These data bytes are dummies, ignore them. After getting the
dummy bytes, you can continue getting the next CAN message.

The CAN device driver expect a CAN message in the predefined format as an
argument. The first byte will be interpreted as a Frame-Format byte . The next 2 or
4 bytes are the message's Identifier depending on the Frame-format. A typical CAN
output as a Standard Frame looks as follows:

PUT #CAN, #1, “<Frame-Format><ID1><ID2>data”

<Frame-Format> contains information that this is a Standard-Frame.

<ID1> contains the upper bits 3...10 of the Identifier.

<ID2> contains the lower bits 0...2 of the Identifier at the bit positions
5, 6 and 7. The remaining bits in this byte are insignificant.

data are dummy data bytes which specifies the DLC length of the RTR
message.
0...8 data bytes are possible.

Sending a RTR message with DLC=0 (standard format):

 msg$ = "<0><0><0>"

 msg$ = ntos$ (msg$, 1, -2, t_id)

 put #CAN, #1, msg$

Sending a RTR message with DLC=8 (standard format):

 msg$ = "<0><0><0>"+"12345678"

 msg$ = ntos$ (msg$, 1, -2, t_id)

 put #CAN, #1, msg$

101 www.wilke.de - +49.2405.408 55-0

Device drivers

Program example receiving:

user_var_strict

#INCLUDE UFUNC3.INC ' User Function Codes

#INCLUDE DEFINE_A.INC ' allg. Symbol-Definitionen

#INCLUDE CAN.INC ' CAN-Definitionen

task main

 BYTE frameformat, msg_len

 WORD ibu_fill

 LONG ac_code, ac_mask, r_id

 string slCode$(4), data$(8)

 INSTALL DEVICE #SER, "SER1B_K4.TD2",&

 BD_38_400,DP_8N,NEIN,BD_38_400,DP_8N,NEIN

 install_device #CAN, "CAN1_K8.TD2", & ' install CAN-driver

 "00 00 00 00 & ' access code

 FF FF FF FF & ' access mask

 01 5C & ' bustim1, bustim2

 00 1A"% ' dual filter mode, outctrl

 Print #SER,#0, "Can Receive All!"

 while 1 = 1

 get #CAN, #0, #UFCI_IBU_FILL, 0, ibu_fill

 if ibu_fill > 2 then ' if there is a message

 get #CAN, #0, 1, frameformat ' get Frame-Info-Byte

 msg_len = frameformat bitand 1111b ' length

 if frameformat bitand 80h = 0 then ' if Standard-Frame

 get #CAN, #0, CAN_ID11_LEN, r_id ' get ID-Bytes

 r_id = byte_mirr (r_id, 2) '

 r_id = r_id SHR 5 '

 using "UH<8><3> 0 0 0 0 3" ' fuer ID Anzeige

 else ' it is extended frame

 get #CAN, #0, CAN_ID29_LEN, r_id '

 r_id = byte_mirr (r_id, 4) '

 r_id = r_id SHR 3 '

 using "UH<8><8> 0 0 0 4 4" ' fuer ID Anzeige

 endif

 print_using #SER, #0, "ID:"; r_id; ", "; ' show ID

 using "UH<1><1> 0 0 0 0 1" ' zeige Laenge an

 print_using #SER, #0, "DLC:";msg_len ; ", ";

 if msg_len > 0 then ' if there are data bytes

 get #CAN, #0, msg_len, data$ ' read out data

 endif

 if bit(frameformat, 6) = 1 then ' RTR Message?

 data$ = ""

 print #SER, #0, "RTR Message";

 endif

 print #SER, #0, data$

 endif

 endwhile

end

102 www.wilke.de - +49.2405.408 55-0

Device drivers

I/O buffer

CAN messages consist of a Frame-Format byte, an Identifier and a maximum of
8 data bytes. The Identifier occupies 2 bytes in the case of a 'Standard frame'. With an
'extended Frame’ the Identifier is 4 bytes long. Every message is stored in the buffer
together with the Frame-Format byte and the Identifier. If a message no longer fits into
the buffer the PUT instruction waits during sending until space is again available in the
buffer. During receipt the message will be rejected and an Overflow error registered.

Number of data
bytes

occupied in the buffer

 Standard Frame extended Frame

0 3 5

8 11 13

Note: if a string containing more than 8 data bytes is transferred to the buffer with
only one single PUT instruction, space will be needed for additional Identifiers since
the date is split between several CAN messages.

Both incoming and sent data will be buffered in a buffer. Size, level or remaining
space of the input and output buffer as well as the driver version can be inquired with
the User-Function codes.

During both output and receipt, a buffer will be regarded as being as full as soon
as less than 13 bytes are free. A CAN message in Extended-Frame format is 13 bytes
long. This limit applies since half CAN messages cannot be stored.

User-Function-Codes for inquiries (instruction GET):

If there is not enough space in the output buffer and you nevertheless wish to
output the instruction PUT or Print (and thus the complete task) waits until space once
again becomes free in the buffer. This waiting can be avoided by inquiring the free
space in the buffer before output.

Example: only output if still sufficient free space in the output buffer:

GET #CAN, #0, #UFCI_OBU_FREE, 0, wVarFree

IF wVarFree > (LEN(A$)) THEN

 PUT #CAN, #0, A$

ENDIF

Example: check whether there is a message in the input buffer (the shortest
possible message is 3 bytes long):

103 www.wilke.de - +49.2405.408 55-0

Device drivers

GET #CAN, #0, #UFCI_IBU_FILL, 0, wVarFill

IF wVarFill > 2 THEN

 ‘ lies die CAN-Nachricht

ENDIF

104 www.wilke.de - +49.2405.408 55-0

Device drivers

Automatic bit rate detection

If the driver is installed in the 'Listen-Only' mode it tries to automatically recognize
the bit rate. In the 'listen-only’ mode the CAN chip itself cannot send anything so that
the otherwise familiar error telegrams will not be produced as long as the bit rate has
not been recognized. Which bit rates are actually recognized can be set in a table. If no
table is transferred during installation an internal table will be used.

The following prerequisites must be met to detect the bit rate:

• An operative bus with data traffic is assumed, i.e. there must be at least two
active participants who send something.

• The table must contain the correct bit rate.

The bit rate detection starts with the first setting from the table, as a rule the
highest possible bit rate. No receive error occurs with the next data packet on the CAN
bus if the bit rate is already correct. If a receive error does however occur, then the
driver switches to the next bit rate in the table and waits for a new CAN telegram. The
driver waits in every case until sufficient CAN telegrams have either enabled a
recognition of the bit rate or the table of possible values has been processed three
times. If the bit rate wasn't recognized, the CAN device driver will not be installed. If
CAN telegrams are only sent very rarely over the bus and the correct bit rate is only at
the end of the table, the detection takes accordingly longer. If the bit rate wasn't
recognized, the device driver quits the 'listen-only’ mode.

The table contains the settings for the registers 'bustim0’ and 'bustim1’ in the
CAN chip. 2 bytes will therefore be needed for every setting. The table must contain at
least 4 bytes otherwise the internal table which contains the following values will be
used

105 www.wilke.de - +49.2405.408 55-0

Device drivers

Program example:

'---

'Name: CAN_ABR.TIG

'auto bitrate selection from pre-defined table

'rest similar to CAN_RX1.TIG

'connect with a CAN bus with sending devices

'---

user var strict 'check var declarations

#INCLUDE UFUNC3.INC 'User Function Codes

#INCLUDE DEFINE_A.INC 'general symbol definitions

#INCLUDE CAN.INC 'CAN definitions

'---

TASK MAIN

 BYTE ever, frameformat, msg_len, can_stat

 WORD ibu_fill 'input buffer fill level

 LONG r_id 'received ID

 STRING msg$(8), data$(8)

 install_device #LCD, "LCD1.TDD" 'install LCD-driver

 print #LCD, "trying to find <10><13>CAN bitrate.<10><13>Please wait..."

 install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver

 "50 A0 00 00 & 'access code

 FF FF FF FF & 'access mask

 00 00 & 'bustim1, bustim2

 0A 1A & 'single filter + listen only, outctrl

 00 43 & '1 Mbit here on table with bytes

 00 5C & '500 kbit for bustim0 and bustim1

 01 5C & '250 kbit for auto bitrate

 03 5C & '125 kbit detection

 04 5C & '100 kbit

 09 5C & ' 50 kbit

 10 45 & ' 49 kbit for SLIO: TSYNC + TSEG1 + TSEG2 = 10

 0F 7F & ' 25 kbit

 1F 7F"% ' 12.5 kbit

 print #LCD, "<1>STAT LEN ID";

 for ever = 0 to 0 step 0 'endless loop

 get #CAN, #0, #UFCI_IBU_FILL, 0, ibu_fill

 print #LCD, "<1Bh>A<0><3><0F0h>IBU_FILL:";ibu_fill;" ";

 if ibu_fill > 3 then 'if at least one message

 get #CAN, #0, 1, frameformat 'which frame format?

 msg_len = frameformat bitand 1111b

 if frameformat bitand 80h = 0 then 'if standard frame

 get #CAN, #0, CAN_ID11_LEN, r_id 'get ID bytes

 r_id = byte_mirr (r_id, 2) 'byte order for Tiger WORD

 r_id = r_id shr 5 'shift right bound

 using "UH<8><3> 0 0 0 0 3" 'to display ID

 else 'else it is extended frame

 get #CAN, #0, CAN_ID29_LEN, r_id 'get ID bytes

 r_id = byte_mirr (r_id, 4) 'low byte 1st in LONG

 r_id = r_id shr 3 'shift right bound

 using "UH<8><8> 0 0 0 4 4" 'to display ID

 endif

 print_using #LCD, "<1Bh>A<9><1><0F0h>";r_id;

106 www.wilke.de - +49.2405.408 55-0

Device drivers

 using "UH<1><1> 0 0 0 0 1" 'display length

 print_using #LCD, "<1Bh>A<6><1><0F0h>";msg_len;

 if msg_len > 0 then 'if contains data

 get #CAN, #0, msg_len, data$ 'get them and display

 msg$ = " " '8 spaces

 msg$ = stos$ (msg$, 0, data$, msg_len)'prepare for LCD field

 print #LCD, "<1Bh>A<0><2><0F0h>data:";msg$;

 else

 print #LCD, ;" RTR ";

 endif

 endif

 get #CAN, #0, #UFCI_CAN_STAT, 0, can_stat 'CAN status

 using "UH<2><2> 0 0 0 0 2" 'HEX format for one byte

 print_using #LCD, "<1Bh>A<1><1><0F0h>";can_stat;

 next

END

107 www.wilke.de - +49.2405.408 55-0

Device drivers

A short introduction to CAN

CAN is an abbreviation for Controllers Area Network. Originally, CAN was
developed as a communications protocol to exchange information in motor vehicles.
CAN is now just as common in automation engineering and domestic engineering. The
basis for the CAN bus is a hardware which makes the connection to the CAN bus and
takes care of the actual message dispatch and message receipt, similar to a UART at
the RS 232 interface, though checksums, error control and repetition of the messages
in the event of errors as well as bus arbitration and bus prioritization. There are a
number of manufacturers who have implemented the CAN-interface on their processor
and there are external CAN chips which can be connected to processors which do not
have a CAN-interface 'on-board’.

Compact data packets are sent on the CAN bus, referred to in the following as CAN
messages. A message consists of an Identifier and between 0 and 8 data bytes from a
user point of view. There are two variants of the bit protocol on the bus, with 11-Bit-
Identifiers in accordance with CAN 2.0A and with 29-Bit-Identifiers in accordance with
CAN 2.0B. Both variants exist next to each other, and both have their advantages and
disadvantages. Modern chips support either CAN2.0B or at least accept the existence
of 29 bit Identifiers on the (CAN2.0B passive).

Bus accesses and access priorities are defined by the CAN specification and are
handled completely by the CAN hardware. The application software places the CAN
message with a 'label' in the CAN send mail box. The label, or Identifier, is not however
an address label but an identification of the contents of the CAN message, e.g. the
temperature information from sensor 'A’, or the adjustment information for pressure
controller 'X’. Any bus user for whose application the message is important will be
programmed to accept this message . The sender cannot find out whether any other
node has accepted the message.

A receiving filter in the CAN hardware pre-filters the messages according to certain
criteria so that all messages reach the application. The biggest differences between
the different implementations of CAN hardware are in the receiving part. Both the
manner of the filtration and the number of the messages which are saved in the receive
mail box are very different. An attempt is made to only allow those messages through
the filter, which are important for the application.

So-called 'Remote Transmission Requests’ can be sent out on the CAN bus. The
corresponding bus users are requested to respond with a specific message. Thus, for
example, the request to report the 'Temperature Boiler 2' can appear on the bus. The
applications in the single CAN nodes determine whether a response will be made to
such send requests and the contents of the response.

The bus accesses take place in a fixed time grid. All bus users synchronize
themselves with every bus access. The accesses take place at the same time. The idle
level on the bus is the '1'. This level is not the dominant one. A '1' can be overwritten

108 www.wilke.de - +49.2405.408 55-0

Device drivers

by a '0', thus the term 'dominant' for the '0'. A bus access starts with a dominant '0'.
This is followed by the '1' and '0' levels of the Identifier, starting with the highest-order
bit. The lower priority bus users have '1'-bits in the higher-order bit positions and can
therefore be overwritten by the prioritized bus users with a '0'. As soon as a user is
unable to place his '1' during a bus access he aborts the bus access to try again later.
This renewed trial is carried out automatically by the CAN hardware and need not be
programmed in the application, which knows nothing at all of this. Only if a bus access
proves impossible after a number of attempts, and the bus therefore apparently
permanently occupied by dominant users, will the application be able to recognize this
status by an inquiry to the error registers of the CAN hardware.

The most concise differences to the majority of other networks and bus systems
are compared here:

Most other industrial bus systems CAN bus

Every user receives an address and
messages are given a destination
address, sometimes together with an
origin address.

There aren't any addresses. The
messages are provided with a content
declaration instead of the address. The
users have programmable input filters
which allow certain messages to pass
through.

An acknowledgement of receipt is often
scheduled. The receiver then confirms
the correct receipt of the transmission.

At the end of a message package the
CAN hardware confirms that this has
been received correctly on the bus
(Acknowledge). Whether any user has
in fact accepted the message is
unknown.

Rules exist for the bus access so that
two users never use the bus
simultaneously.

Several users can access the bus with
CAN simultaneously. Prioritized users
replace the others, who automatically
access the bus later, during the access.
The bus access is handled completely
by the CAN hardware.

109 www.wilke.de - +49.2405.408 55-0

Device drivers

Error situations

In the following, some error situations are listed and it will be shown how these

can be recognized .

Error Possible cause

What is seen on the Scope: a user
permanently and continually sends on
the bus although the application only
wanted to send a single message.

The sending user, or better: their
hardware, receives no Acknowledge
from another bus user. The CAN
hardware thus sends the message
again and again.
Possible reasons:
Only one active user is on the bus. The
others are either unavailable, switched
off or have not been initialized.
The bit rate of this participant doesn't
correspond with the bit rate of the
other bus users.

Messages which are safely sent don't
arrive.

Receive errors occur. Have the error
register shown to be able to draw
conclusions on the error.
If the error registers are all right, it
could be that the filters don not let the
Identifier pass.

When sending, the error register is set
immediately.

The bus is possibly permanently
occupied by a higher prioritized user
(overload) or the bit rate is wrong.
Is there another active user? At least
one bus user must set the ACK bit.

110 www.wilke.de - +49.2405.408 55-0

Documentation History

Documentation History

Version of
Documentation

Description / Changes

001 - First release

002 - OTYPE_PIN, OTYPE_PORT, PU_PD_PIN, PU_PD_PORT

003 - SER1B baudrates

- SYSVARN: BACKUP_RAM_SIZE

- READ_BACKUP_RAM / WRITE_BACKUP_RAM

- RTC1 User-function-codes

004 - ANALOG2

005 - RTC1 example

006 - Font bug fixed

007 - CAN-Bus

008 - SYSVARN: FLASH_BUSY

- ERASE_FLASH_SECTOR

009 - ANALOG1

010 - ERASE_FLASH_SECTOR Tiger plus Firmware notice added

011 - READ_T_CODE$

	Index
	Installation
	Development environment
	Tiger plus module
	Hardware
	Software

	String length
	Tiger-BASIC Preprocessor Instructions
	#define TIGER_PLUS

	Tiger-BASIC Compiler Instructions
	USER_FREQUENCY
	DATA

	Updated functions
	SYSVARN
	READ_T_CODE$

	New functions
	READ_BACKUP_RAM
	WRITE_BACKUP_RAM
	OTYPE_PIN
	OTYPE_PORT
	PU_PD_PIN
	PU_PD_PORT
	ERASE_FLASH_SECTOR

	Device drivers
	SER1B – serial interfaces
	RTC1.TDP
	User-function-codes of the RTC1.TDP

	ANALOG1.TDP
	Secondary addresses for TINY, BASIC and ECONO Tiger
	Secondary addresses for Tiger 2

	ANALOG2.TDP
	User-function-codes of the ANALOG2.TD2
	Measuring with trigger

	CAN-Bus
	Differences to TCAN & Tiny Tiger 2
	Description of the device driver CAN1_xx.TDP
	CAN messages in the I/O-buffer of the driver
	Standard frame
	Extended Frame
	CAN User-Function-Codes
	Reinstall CAN driver
	Master reset
	Bus-Timing and transfer rate
	Bustiming-Register 0
	Bustiming-Register 1
	Error Register
	Arbitration-Lost error
	RXERR receive error counter
	TXERR send error counter
	Receive filter with Code and Mask
	Set Access-Code and Access-Mask
	Standard-Frame with Single-Filter configuration
	Extended Frame with Single-Filter configuration
	Setting of more access codes in standard format
	Setting of the local acceptance mask in standard format
	Setting of more access codes in extended format
	Setting of the local acceptance mask in extended format
	Sending CAN messages
	Receive CAN messages
	CAN RTR messages
	I/O buffer
	Automatic bit rate detection
	A short introduction to CAN
	Error situations

	Documentation History

