
 

1 www.wilke.de   -  02405 / 40855 - 0 
 

Index 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Manual Addendum 
 

TINY-Tiger 2 
 
 



 

2 www.wilke.de   -  02405 / 40855 - 0 
 

Index 
 

Blank Page 
 
 



 

3 www.wilke.de   -  02405 / 40855 - 0 
 

Index 
 

Index 
Index 3 

Installation 5 

Development environment 6 

TINY-Tiger 2 module 7 

String length 8 

XBUS Timing 9 

New functions: Interrupts 11 

INTTASK 15 
SET_INT 16 
CONFIG_TIMER_INT 17 
ENABLE_INT 19 
DISABLE_INT 20 
COUNTS 23 
DIFF_COUNTS 24 
SET_COUNTS 25 
SLEEP 26 

Further functions: 27 

SHIFT_OUT 27 

Device drivers 29 

ANALOG1.TD2 30 
A/D inputs with ANALOG2.TD2 31 
RTC1.TD2 46 
MF2_xxxx.TD2 – MF-II PC keyboard 55 
CAN-Bus 61 
Output pulse with high resolution 118 

Documentation History 123 

 
 



 

4 www.wilke.de   -  02405 / 40855 - 0 
 

Index 
 

Blank Page 
 
 



 

5 www.wilke.de   -  02405 / 40855 - 0 
 

Installation 
 

Installation 
In order to work with Tiger2 using an existing compiler-version 5.2, several new 

files are required, which have to be copied into particular directories of your existing 
Tiger-BASIC installation. This concerns the following files: 
 
 
file name(s): file tipe: copy to: 
Tgbas32.exe new compiler-version ..\Bin 
*.TD2 Device drivers for Tiger 2 ..\Bin 
Tac0100.TA2 System file for Tiger 2 ..\Bin 
Tac0100_.TA2 System file for Tiger 2 ..\Bin 
Thinfo0.TH2 System file for Tiger 2 ..\Bin 
Define_a.INC general symbol-definitions ..\Include 
Ufunc4.INC definitions user-function-codes ..\Include 
 
 



 

6 www.wilke.de   -  02405 / 40855 - 0 
 

Development environment 
 

Development environment 
The following needs to be considered in the Tiger-BASIC IDE when employing 

TINY-Tiger 2: 
 

 The interface-settings, to be found in the Options / Communication 
menu, are to be adjusted so that the baud rate is 115,200 and parity is 
set to “none”. 

 
 The TINY-Tiger 2 module will be recognized by its development 

environment automatically. If a program has to be compiled for the TINY-
Tiger 2, without a module being connected, the module type has to be 
set to “Tiger 2” in the menu Options / Compiler. 



 

7 www.wilke.de   -  02405 / 40855 - 0 
 

TINY-Tiger 2 module 
 

TINY-Tiger 2 module 
 

Hardware 

Aside from the basic differences between the classical TINY-Tiger and the new 
TINY-Tiger 2 such as the number of pins and therefore the number of I/O’s due to the 
additional rows of pins, there are differences in certain pins, which have obviously 
not changed in their function when compared to the TINY-Tiger. However, the 
differences are the following: 

 
 In the TINY-Tiger 2, the pins L33…L37, L40…L42, L60…L67, L70…L73 as 

well as L80…L87 have a voltage range of 0 to 3.3 V as outputs. In the 
TINY-Tiger, these pins have a voltage range of 0 to 5 V. 

 
 Pin 43 (battery input) of the TINY-Tiger serves as an input for the battery 

buffering of the SRAM as well as the RTC (real time clock). In the TINY-
Tiger 2, there are two separate pins: pin 43a (BATT-RAM) for the 
buffering of the SRAM as well as pin 43b (BATT-RTC) for the buffering of 
the real time clock. 

 

Software 

A further change in the TINY-Tiger 2 concerns the software, viz. the file type 
STRING: Theoretically, strings with a length of up to 2 GB can be processed. In 
practice, therefore, the length of a string is only restricted by the size of the module’s 
SRAM. 
 
 



 

8 www.wilke.de   -  02405 / 40855 - 0 
 

String length 
 

String length 
 

In the Tiger 2, the maximum length of a string is no longer restricted (only by the 
RAM). Therefore, even more data can be put into a string. This is to be taken with a 
grain of salt, though, since the duration of the operations increases correspondingly 
for very large strings. Very large strings can also influence the timing of the multi-
tasking system, since one BASIC instruction is always completed before a change in 
tasks can take place. 
 
 



 

9 www.wilke.de   -  02405 / 40855 - 0 
 

XBUS Timing 
 

XBUS Timing 
 

Output timing of extended I/O system (TINY-Tiger 2): 
 

 
 
 
 
 

Input timing of extended I/O system (TINY-Tiger 2): 
 

 
 
 



 

10 www.wilke.de   -  02405 / 40855 - 0 
 

XBUS Timing 
 

Input timing of extended I/O system with Delay (TINY-Tiger 2). For details about 
slowing down the bus speed, please look at documentation of XIN with delay in 
New_and_updated_Functions_since_5_2. This function is typically used with Tiger-2, 
if devices running with Tiger-1 are too slow for the use with Tiger-2. 
 

 
 
 



 

11 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

New functions: Interrupts 
 

In the Tiger 2, one can operate interrupts as well as multi-tasking. This happens 
very easily through the new interrupt tasks. Instead of polling a pin or determining 
certain time distances with wait_duration or diff_ticks, you can now configure 
interrupts. In total there are now 4 different interrupt sources with 4 different 
priorities. It is important to first configure the interrupts correctly and then to start 
them. 
 
 

The interrupts are handled with in a separate task, which is provided only for the 
handling of the interrupts. Normal tasks cannot be assigned to an interrupt and 
interrupt tasks cannot be started normally like any other task. The INTTASK starts 
automatically, if the corresponding interrupt source is set off. 
 
 

If several interrupts occur simultaneously, the interrupt with the highest priority 
will be carried out first. An interrupt in process can only be interrupted by an interrupt 
of a higher priority. 
 
 

Priority Interrupt source 

0 INTM1 

1 Timer 

2 INTM3 

3 INTM4 
 
 

When an interrupt occurs, the normal multitasking system is stopped. The current 
instruction is carried through and after that the whole program comes to a halt. Only 
the INTTASK is being carried out. After quitting the INTTASK, the program returns to 
where it has been interrupted. The INTTASK can only be interrupted by higher 
interrupts, which will also be carried through first, and only after this does the 
program return to the interrupt. 
 

 
Nota bene: Please note that the execution of an interrupt should occur fast. It is 

therefore better to refrain from very complex instructions and various 
instructions such as wait_duration or loops since the interrupt handler 
has to be operated as fast as possible, just in case a new interrupt 
occurs during the process. This interrupt can be buffered optionally, 
however, it is more correct when no other interrupt occurs during the 



 

12 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

interrupt handling. This goes especially critical with timer interrupts, as 
they occur in equal time sequences. 

 
 
The following tasks and instructions can be used for interrupts: 
 
 INTTASK   => defines a task for the handling of interrupts 
 SET_INT   => assigns an INTTASK to an interrupt 
 CONFIG_TIMER_INT => writes byte above HDQ 
 ENABLE_INT  => activates one or all interrupts 
 DISABLE_INT  => deactivates one or all interrupts 

 
 



 

13 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

INTM4 

 
The INTM4 interrupt is a very special one, and has to be dealt with carefully. It 

can be used on BASIC level and also implements a counter (Long), which can be 
controlled by functions. 

The BASIC interrupts occur no more frequently than every ms. Which means that 
they are constrained to some extent in their timing capabilities. 

The counter will, however, be counted up on every recognized interrupt, so no 
interrupt will be missed. This interrupt therefore also suits perfectly for counting 
interrupts. This happens automatically and the handling does not have to be 
implemented into an INTTASK. The counting is of course very much faster than 
counting the values in an INTTASK! 

 

For the interrupt INTM4 you can use the following functions: 
 
 COUNTS   => reading the counter 
 DIFF_COUNTS  => difference 
 SET_COUNTS  => setting the counter 

 
 



 

14 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

PC mode 

 
After the download of the basic program from the IDE, all interrupts are by default 

turned off. Since the time response is different in the PC mode, you are therefore are 
secured from an overflow of interrupts. Of course, the interrupts can easily be turned 
on again. When canceling the lock-out of the interrupts, they will occur exactly as set 
out in the program. 

 
Following the same principle, the buffering of the interrupts can be controlled. 

The buffering can therefore be stopped or one can let it work as described in the 
program. 

 
To modify the settings, please go to: 
 
Debug -> Debug interrupts… 
 
There, the interrupts can be turned off globally or individually, and the buffering 

can be set for each interrupt. 
 
 



 

15 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

INTTASK 
 
INTTASK  Name 
   : 
   : 
END 
 
 
Function: INTTASK begins a task that is made especially for the handling of 

interrupts. After the task has been assigned to an interrupt, the task 
will automatically be called when the interrupt is triggered. 

 
 
Please note:      The INTTASK can be written like any other task, it 

has local variables, as well as access to all 
global variables. 

 
 
Important: Please note that the execution of an interrupt should occur fast. It is 

therefore better to refrain from very complex instructions and various 
instructions such as wait_duration or loops since the interrupt handler 
has to be operated as fast as possible, just in case a new interrupt 
occurs during the process. This interrupt can be buffered optionally, 
however, it is more correct when no other interrupt occurs during the 
interrupt handling. This goes especially critical with timer interrupts, as 
they occur in equal time sequences. 

 
 



 

16 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

SET_INT 
 
SET_INT  task name, interrupt number 
 
 
Function: Assigns an INTTASK to an interrupt. 
 
 

Parameters: 
 B W L S F 
Task name - - - - - The name of an existing INTTASK will be quoted. 

This task will be started when the interrupt is 
triggered. 

 
Interrupt number    - - Number of interrupt signal that starts the task: 

1: INTM1 
2: Timer interrupt 
3: INTM3 
4: INTM4 

 
 
Please note:      Before the interrupts are activated, an INTTASK 

has to be assigned to the active interrupts!!! 
 
 



 

17 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

CONFIG_TIMER_INT 
 
CONFIG_TIMER_INT  prescaler, interval, postscaler 
 
 
Function: The interval for the timer interrupt is being set. 
 
 

Parameters: 
 B W L S F 
Prescaler     - - Determines the frequency/resolution for a timer 

tick. 
      0: 0.4µs 
      1: 1.6µs 
      2: 6.4µs  
 
Interval    - - Value between 0….65535 
      Determines the interval length. More details 

further down in the text. 
 
Postscaler    - - Sets the number of the already determined time 

intervals, until a timer interrupt is triggered. 
 
 

If you require an interval of 0.4s at a resolution of 6.4 µs you simply divide: 
 
0.4s / 6.4µs = 62,500 
 
Therefore 62,500 is given as 2nd parameter, if you require an interval of 0.4s with 

a resolution of 6.4µs. 
 
 desired time  /  prescaler  =  interval 

 
 

If you want to increase the time span further, you can increase the postscaler. 
The postscaler determines how often the time span that has been set before has to 
occur, until an interrupt is triggered. If the time span is 0.4 seconds, as above, and 
the postscaler is set to 10, the interrupt will be triggered every 4 seconds. It is 
therefore possible to create very large time spans (up to > 7 hours). The postscaler 
must not exceed the value 65535 (0FFFFH). If you do not want a postscaler, put in the 
value 1 or 0. 
 
 



 

18 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

Please note:      The timer interrupt must not be chosen too 
narrowly, since, in general, the processing is to 
be faster than the time span for the interrupt. 
When the INTTASK is not ready yet, and another 
interrupt does still occur, there will be timing 
problems and the rest of the program will not be 
carried out. 

 
 



 

19 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

ENABLE_INT 
 
ENABLE_INT  Int-No, buffering 
 
 
Function: One interrupt, or optionally all interrupts are activated. 
 
 

Parameters: 
 B W L S F 
Int-No    - - Number of interrupt signal to be enabled: 

1: INTM1 
2: Timer interrupt 
3: INTM3 
4: INTM4 
255: all interrupts 

 
buffering    - - 0= interrupt is buffered 

1= interrupt is not buffered 
 
 
Please note:      Before the interrupts are activated, an INTTASK 

with SET_INT has to be assigned to them. In the 
case of the timer interrupt, it has to be 
configured additionally with CONFIG_TIMER_INT. 

 
 
Please note:      When the interrupt is not buffered, the next 

interrupt can only occur when the corresponding 
INTTASK is brought to completion. All identical 
interrupts before this moment will be ignored. 
When the interrupts are buffered, the interrupts 
that occur during the corresponding INTTASK, 
will be carried out immediately after the 
INTTASK, so they will be attached to the 
interrupt. The maximum number of interrupts per 
interrupt source that can be buffered is 255! 

 



 

20 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

DISABLE_INT 
 
DISABLE_INT  Int-No 
 
 
Function: Deactivates one or all interrupts. 
 
 

Parameters: 
 B W L S F 
Int-No    - - Number of interrupt signal to be disabled: 

1: INTM1 
2: Timer interrupt 
3: INTM3 
4: INTM4 
255: all interrupts 

 
 
Please note:      After calling up the instruction, the interrupt will 

no longer be triggered. The buffered interrupts 
up to now will still be executed. They will not be 
dismissed. 

 
 



 

21 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

Sample program: 

#include define_a.inc 

 

' Global variables 

long INT1 

long INT2 

long INT3 

long main_cnt 

 

 

task main 

 

  install_device #0, "LCD1.TD2"  ' install LCD driver 

 

  ' init Vars 

  INT1 = 0 

  INT2 = 0 

  INT3 = 0 

  main_cnt = 0 

 

 

  ' Show start status of the (interrupt) values 

  print #0, "<1BH>A"; CHR$(0); CHR$(1); "<0F0H>"; INT1 

  print #0, "<1BH>A"; CHR$(0); CHR$(2); "<0F0H>"; INT2 

  print #0, "<1BH>A"; CHR$(0); CHR$(3); "<0F0H>"; INT3 

 

 

  ' set interrupt vectors 

  set_int one, 1 

  set_int two, 2 

  set_int three, 3 

 

 

  config_timer_int 2, 62500, 10 ' configure timer interrupt ( 4 sec ) 

 

  enable_int 255, 0             ' start ALL interrupts 

 

 

  while 1=1 

    print #0, "<1BH>A"; CHR$(0); CHR$(0); "<0F0H>"; main_cnt 

    wait_duration 500 

    main_cnt = main_cnt + 1 

  endwhile 

end 

 

 

 

inttask eins 

  INT1 = INT1 + 1 

  print #0, "<1BH>A"; CHR$(0); CHR$(1); "<0F0H>"; INT1 

end 

 

inttask zwei 

  INT2 = INT2 + 1 

  print #0, "<1BH>A"; CHR$(0); CHR$(2); "<0F0H>"; INT2 

end 

 



 

22 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

inttask drei 

  INT3 = INT3 + 1 

  print #0, "<1BH>A"; CHR$(0); CHR$(3); "<0F0H>"; INT3 

end 

 
 



 

23 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

COUNTS 
 
long = COUNTS () 
 
 
Function: Get the current counter reading of the INTM4 interrupt. 
 
 
 
COUNTS delivers the number of the counted INTM4 interrupts. The COUNTS counter 
overruns after 2,147,483,647 counts. The counter remains in the positive values 
margin of the LONG numbers. The difference between two counter readings is 
determined by the function DIFF_COUNTS and takes into account that the counter 
might just have overrun. With SET_COUNTS, the counter is set to a new value. 
 



 

24 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

DIFF_COUNTS 
 
diff = DIFF_COUNTS ( x ) 
 
 
Function: Determines the number of occurred interrupts from a given moment. 
 
 

Parameters: 
 B W L S F 
x    - - Value of the saved counter reading 
       
diff    - - Difference between current counter reading and 

saved counter reading x. 
 
 
The COUNTS counter overruns after 2,147,483,647 counts. The counter remains in 
the positive values margin of the LONG numbers. The function DIFF_COUNTS delivers 
the difference between the given value and the current value of the counter correctly 
even in the moment of the overrun. 
 



 

25 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

 SET_COUNTS 
 
SET_COUNTS ( cnt ) 
 
 
Function: Set the INTM4 counter to a certain value. 
 
 

Parameters: 
 B W L S F 
cnt    - - Counter will be set to this value. 
 
 
The counter counts the INTM4 interrupts. The COUNTS counter overruns after 
2,147,483,647 interrupts. The counter remains in the positive values margin of the 
LONG numbers. The current counter reading is read with the function COUNTS. The 
difference between two counter readings is determined by the function DIFF_COUNTS 
and takes into account that the counter might just have overrun. 
 
 



 

26 www.wilke.de   -  02405 / 40855 - 0 
 

New functions: Interrupts 
 

SLEEP 
 
SLEEP () 
 
 
Function: Tiger goes into the energy saving modus and the basic program stops 

at this point, until an INTM4 occurs. The Tiger 2 now consumes only 
about 30 mA. 

 
 
 
 
Please note:      After executing this instruction, the Tiger 2 stops 

immediately. To continue the program, an 
interrupt has to be generated on INTM4. Then the 
program will be continued behind the SLEEP 
function. 

 



 

27 www.wilke.de   -  02405 / 40855 - 0 
 

Further functions: 
 

Further functions: 

SHIFT_OUT 
 
SHIFT_OUT  Log_iPortaddr, data pin, clock pin, variable, number 
 
 
Function: Clocked, serial output to external chips. SHIFT_OUT transfers the 

indicated number of bits of the variable through the data pin. For each 
bit of data, a clock impulse is produced by double inversion of the 
clock pin. Data pin and clock pin are on one internal port with the 
address Log_iPortadr. 

 
 

Parameters: 
 B W L S F 
Log_iPortaddr    - - Logical, internal port address 
 
Data pin    - - Number of pin at which data bits are put out. 
 
Clock pin    - - Number of pin that is used as clock pin. 
 
Variable     - Contains the data to be written at data pin. 
 
Number    - - With numerical variables ‘Number’ determines 

how many bits are written. With a positive 
number, the least significant bit (LSB) will be 
sent first, with a negative number, the most 
significant bit (MSB) will be sent first. The 
number of bits to send is restricted to 32. Spare 
bits with BYTE or WORD are written as 0-bits. 
With variables of the type STRING, the given 
number is valid for every single byte and is 
restricted to 8. The whole string is always 
written. 
A REAL number (8 bit * 8 byte) can be shifted, if 
it is first converted to a LONG-number with the 
help of the functions RTL or LREAL and HREAL. 

 
 

SHIFT_OUT writes a serial data stream clocked to an output-pin of an internal 
port. A second pin of the port is used as clock pin. The clock is set by the TINY-



 

28 www.wilke.de   -  02405 / 40855 - 0 
 

Further functions: 
 

Tiger  2 module. A clock impulse is generated by inverting the clock pin twice. The 
idle state can therefore be preset. A SHIFT_OUT instruction writes a maximum of 32 
bits with whole numbered numerical variables, always 64 bits with REAL numbers 
and with strings always the whole string. For strings, the quantity tells how many bits 
of each byte are being written. 

Applications of the SHIFT_OUT instruction are e.g. shift registers or connections 
of several modules, when the serial ports are already occupied for other purposes. 

The picture shows the transfer of the character ‘a’ with high active (a) and with 
low active (b) level on the clock line. 

 

 

 

On the Tiger 2  modules, the cycle time is 1.4 microseconds as a standard. With 
SET_SYSVARN, a system variable can be set that slows down the clock, up to a cycle 
time of 5.8 microseconds. 

 
 



 

29 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Device drivers 
 

On principle, all device-drivers that can be found for the Tiger 1 (BASIC-Tiger, 
TINY-Tiger, Econo-Tiger) are also available for the TINY-Tiger 2. A distinction is made in 
the naming, however: 

 
*.TDD: Device driver for Tiger 1 
*.TD2: Device driver for Tiger 2 
 
There might be some differences for some drivers due to special specifications of 

the TINY-Tiger 2. These will be talked about in more detail later on. 
 
 



 

30 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

ANALOG1.TD2 
 

Since the TINY-Tiger 2 now offers 12 analog inputs, the secondary addresses 
chance slightly when reading in. Here are some examples: 
 
GET #4, #0, 1, value reads from the Analog1 driver (here: address 4) from A/D-

channel 0 exactly 1 byte into variable ‘value’ (8 bit 
resolution). Value is of type BYTE, WORD or LONG. 

 
GET #4, #4, 2, value reads from the Analog1 driver from A/D-channel 4 exactly 2 

bytes into variable ‘value’ (10 bit resolution). Value is of type 
WORD or LONG. 

 
GET #4, #5, 2, value reads from the Analog1 driver from A/D-channel 5 exactly 2 

bytes into variable ‘value’ (10 bit resolution). Value is of type 
WORD or LONG. 

 
GET #4, #11, 2, value reads from the Analog1 driver from A/D-channels 11 exactly 

2 bytes into variable ‘value’ (10 bit resolution). Value is of 
type WORD or LONG. 

 
GET #4, #12, 12, V$ reads from the Analog1 driver from the A/D-channels 0…11 

exactly 1 byte per channel into V$ (8 bit resolution). V$ is of 
type STRING and must be large enough to accommodate 12 
bytes. The byte from channel 0 is the first byte. The value of a 
channel can, e.g., be read from the string like this (CH = 
channel number): 

 Value = NFROMS ( V$, CH, 1 ) 
 
GET #4, #13, 24, V$ reads from the Analog1 driver from the A/D-channels 0…11 

exactly 2 bytes per channel into V$ (10 bit resolution). V$ is 
of type STRING and must be large enough to accommodate 
24 bytes. The low value byte from channel 0 is the first byte. 
The value of a channel can, e.g., be read from the string like 
this (CH = channel number): 

 Value = NFROMS ( V$, CH*2, 2 ) 
 
 



 

31 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

A/D inputs with ANALOG2.TD2 
 

The device-driver ANALOG2 reads in analog values controlled by the time basis 
device driver ‘TIMERA’ and stores them in a FIFO-buffer (FIFO=First-In-First-Out) or a 
string. 

Further information about ANALOG2.TD2: 

 User-function-codes 
 Measuring in FIFO 
 Measuring in string 
 Measuring with 12 bit 
 Setting of the sample-rate 
 Measuring with trigger 

File name: ANALOG2.TDD 

INSTALL DEVICE #D, "ANALOG2.TDD" 

D is a constant, variable or an expression of the data type BYTE, 
WORD or LONG in the range of 0…63 and represents the device 
number of the driver. 

The device driver ANALOG2.TD2 reads in analog values from the internal analog 
channels into a FIFO buffer or a string. The measurements are synchronized with the 
help of the time basis driver ‘TIMERA.TD2’ so that they are taken independent of the 
BASIC program and up to high speeds. The time basis driver provides a basic 
frequency that is divided down through the prescaler of the driver ANALOG2 to the 
actual measuring rate. The setting of the prescaler can be changed through 
commands (user-function-code) to the driver. 

Please note: TIMERA.TD2 must be integrated before ANALOG2.TD2. 

The driver supports the resolutions 8-bit, 10-bit and 12-bit. The 12-bit resolution 
is extrapolated from a 10-bit reading using numerical integration. The analog values 
can be read in either into a string or a FIFO buffer. The following reading modes are 
supported: 

 from a single channel (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11) 
 from channel 0 and 1 
 from channel 0, 1 and 2 
 from channel 0, 1, 2 and 3 
 from channel 0, 1, 2, 3, 4, 5, 6, and 7 (only string) 
 from channel 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 (only string) 



 

32 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

There are therefore many different settings, from which channel in what resolution to 
where the analog values are read in. For this purpose the speed (measure or sample 
rate) can be adjusted in many different ways. In addition, options can be selected 
that relate to the behavior of the reading as far as strings or FIFO-buffer is concerned. 
Therefore following is some information concerning the differences between 
‘measurement in string’ and ‘measurement in FIFO’ and what has to be paid attention 
to with the different settings. 

For setting up the analog measuring system, there are several user-function 
codes, which are defined as symbolical names in UFUNCn.INC. Settings that have 
been carried out once are maintained and must not be done again before each 
measurement. If options are given explicitly at the start of the measurement (offset in 
the string, number of measurements), then these are valid only for this one 
measurement. The settings that have been made beforehand with the help of the 
user-function-codes will be maintained. 

The following table shows an overview of the particular function-codes of this 
driver. The file UFUNCx.INC must be integrated, so that the compiler knows the 
command symbols. 

 
 



 

33 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

User-function-codes of the ANALOG2.TD2 

User-function-codes of the ANALOG2.TD2 for setting of parameters (PUT): 

No. Symbol 
prefix: UFCO_ 

Description 

46 UFCO_AD2_RESET Set all parameters to standard values 

128 UFCO_AD2_CHAN Set single channel mode (FIFO, STRING): 
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 (default: 1) 
This channel is also the measured channel in 
the mode multi-channel measurement, if only 
one channel is set. 

129 UFCO_AD2_RESO Set resolution (FIFO, STRING): 
8 = 8-bit (default) 
10 = 10-bit 
12 = 12-bit 

130 UFCO_AD2_INTEG Integration-width at 12-bit (FIFO, STRING): 
16, 32, 64, or 128 (default: 16) 

131 UFCO_AD2_STOVL Flag: "Stop-on-FIFO-overflow" (FIFO) 
0 = YES 
n = no = wrap-around for FIFO 
It is always stopped with strings. 

132 UFCO_AD2_CNT Number of measures (per channel) (FIFO) 
0 = endless (only for FIFO, default) 
n = number (LONG) 

133 UFCO_AD2_PSCAL Pre-scaler, divides the basic frequency of the 
driver "TIMERA.TDD" down (FIFO, STRING): 
0,1 = without pre-scaler 
n = divider (WORD) 

134 UFCO_AD2_STOP Stop AD-sampling (FIFO, STRING): 
only DUMMY-parameter 

135 UFCO_AD2_GROF Set growth-flag (STRING) 
0 = spontaneous assignment of size at the 
end of a row of measurements.  
else = continual increase of string-length with 
every measurement (when string size 
increases!) 

136 UFCO_AD2_SCAN Set multi-channel mode and number of 
channels (FIFO, STRING): 
n = 1: the last channel to be set with 
UFCO_AD2_CHAN  



 

34 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

No. Symbol 
prefix: UFCO_ 

Description 

n = 2: 2-channel:     Ch-0, Ch-1 
n = 3: 3-channel:     Ch-0, Ch-1, Ch-2 
n = 4: 4-channel:     Ch-0, Ch-1, Ch-2, Ch-3 
n = 8: 8-channel:     Ch-0 … Ch-7 
n = 12: 12 channel: Ch-0 … Ch-11 

137 UFCO_AD2_ISAMP Integral-samples (FIFO, STRING): tells which 
measurement is to be written into the target 
buffer (e.g. every 2nd, every 10th, …). Is only 
valid when INTEGRATION is done (only for 12-
bit) 
values: 1...65535 (WORD) 

138 UFCO_AD2_TRIG_SAMPLE Sets the number of samples that are 
measured after the trigger event occurs and 
at the same time activates the trigger mode. 
To deactivate, set to 0FFFFH. 

139 UFCO_AD2_TRIG_HLEV Sets the high trigger level. When 
measurement is exceeding this value, the 
trigger event sets in. Exactly 4, 8 or 12 
WORDs are expected (one WORD for each 
channel) 

140 UFCO_AD2_TRIG_LLEV Sets the low trigger level. When measurement 
is falling below this value, the trigger event 
sets in. Exactly 4, 8 or 12 WORDs are 
expected (one WORD for each channel) 

143 UFCO_AD2_PSCIMM Sets the pre-scaler during the running 
measurement.  

 



 

35 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

User-function-codes of the ANALOG2.TD2 for reading in parameters (GET): 

Nr Symbol 
prefix: UFCI_ 

Description 

68 UFCI_CPU_LOAD Read the CPU-performance that is consumed 
by this driver (100%=10.000) 

99 UFCI_DEV_VERS Version of the driver 

148 AD2_TRIG_POS Reads out the trigger position, when the 
trigger event has occurred 

149 AD2_STRI_WRITE Reads out the current writing position in the 
string 

150 AD2_STRI_OVL Reads out, whether the string has already 
overrun once in trigger mode. 
0: string overrun at least one time 
0FFH: String has not overrun yet 

 
 



 

36 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Measuring in FIFO 

First determine the desired resolution, the desired maximum measuring rate as 
well as the number of channels. 

If you want to produce a stream of measurement data with no interruptions, you 
have to measure into a FIFO buffer. How the measured data is removed from the FIFO 
buffer and processed determines the maximum possible measuring rate that there is 
without the FIFO buffer running over and this causing measured data to be lost. The 
larger the FIFO buffer, the larger the fluctuations in the speed of the processing of the 
data are allowed to be. The measuring in a FIFO buffer as well as the collecting of the 
data, however, is slightly slower than measuring in a string. When the FIFO buffer is 
full, the device driver stops the measurement. For further measurements, it has to be 
started again, or the “wrap-around” needs to be turned on beforehand. 

With 12-bit resolution (and only there!) the integration depth can be set (size of 
the internal integration buffer). The number of measurements can be reduced, by not 
transferring every internally read measurement into the string or the FIFO buffer. In 
that way, measurements are made that are further apart in the time scale, but which 
are reduced in noise. 

After all settings have been made with the help of the User-Function-Codes, the 
measurement in a FIFO buffer is started this way: 

PUT #D, FIFO_Name 

D is a constant, a variable or an expression of data type BYTE, 
WORD, LONG in the range between 0…63 and stands for the 
device number of the driver. 

FIFO_Name is the FIFO buffer, into which the measurements are written. The 
buffer is FIFO of byte with 8-bit measurements and FIFO of word 
with 10-bit or 12-bit measurements. The FIFO buffer is set 
automatically to EMPTY at the beginning. 

Please note, that with integration (12-bit), the measured values are valid only 
when the internal integration buffer is filled once. 

The measurement can be aborted with the User-Function-Code UFCO_AD2_STOP. 

 
 



 

37 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Sample program: 

'--------------------------------------------------------------------- 

' Name: ANALOG2F.TIG 

'--------------------------------------------------------------------- 

#INCLUDE DEFINE_A.INC                   ' general definitions 

#INCLUDE UFUNC3.INC                     ' User Function Codes 

 

TASK MAIN                               ' Beginning Task MAIN 

  FIFO SAMPLE (256) OF WORD             ' Sample-Buffer 

  WORD A, B, C, D                       ' Var. for analog values 

' install LCD-driver (BASIC-Tiger) 

  INSTALL DEVICE #LCD, "LCD1.TD2" 

' install LCD-driver (TINY-Tiger) 

'  INSTALL DEVICE #LCD, "LCD1.TD2", 0, 0, 0, 0, 0, 0, 80h, 8 

' install TIMER-A driver(time basis clock: 1001Hz) 

  INSTALL_DEVICE #TA, "TIMERA.TD2", 3, 156 

' install ANALOG-2 driver 

  INSTALL_DEVICE #AD2, "ANALOG2.TD2" 

 

  PUT #AD2,#0,#UFCO_AD2_RESO, 10        ' resolution 

  PUT #AD2,#0,#UFCO_AD2_SCAN, 4         ' number of channels 

  PUT #AD2,#0,#UFCO_AD2_STOVL, 0        ' stop on overflow 

  PUT #AD2,#0,#UFCO_AD2_PSCAL, 5        ' Pre-Scaler: 1001/5=200S/sec 

  PUT #AD2,SAMPLE                       ' Start measurements 

 

  K = 0 

  WHILE K < 127                         ' End when a FIFO is full 

    K = LEN_FIFO(SAMPLE)                ' 

    PRINT #LCD, "<1>Length=";K 

  ENDWHILE 

                                        ' ---------------------------- 

  WHILE LEN_FIFO(SAMPLE) > 4            ' show FIFO 

    GET_FIFO SAMPLE, A 

    PRINT #LCD, "<1bh>A<12><0><0f0h>";A; 

    GET_FIFO SAMPLE, B 

    PRINT #LCD, "<1bh>A<12><1><0f0h>";B; 

    GET_FIFO SAMPLE, C 

    PRINT #LCD, "<1bh>A<12><2><0f0h>";C; 

    GET_FIFO SAMPLE, D 

    PRINT #LCD, "<1bh>A<12><3><0f0h>";D; 

  ENDWHILE 

  PRINT #LCD, "<1Bh>A<0><3><0F0h>ready"; 

END                                     ' End Task MAIN 

 
 



 

38 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Measuring in String 

First, determine the desired resolution, the desired (maximum) measuring rate, 
as well as the maximum number of channels. 

If you want to produce successive measuring sections, it is advisable to measure 
in a string. Advantages: the measurement requires less CPU performance and the 
processing is faster than with measurements in FIFO buffer, due to the string 
processing functions. When the string is to be passed on serially, e.g., it can be sent 
directly in pieces of 240 bytes each (this is the restriction of the instructions PRINT 
and PUT). The measurement is stopped, when the string is full. 

To read in analog values into a string, first, a string is declared in the fitting 
length. The time basis driver TIMERA.TD2 is integrated and set to the highest basic 
frequency that is required in the application. Further settings such as pre-scaler, 
resolution, number of channels as well as number of measurements are set. 

There always has to be a measurement-string! Not permitted are thus variables 
that live only temporarily, like local strings (in subroutines) or temporary strings 
(expressions). Correct: global or task-local strings. 

The measurement does not have to be written in the string from position 0. Also, 
the string does not necessarily have to be empty. An offset can be named, from which 
position in the string data is written. Values before the writing position are 
maintained, when they have been defined beforehand. If the string was shorter than 
the offset, there are undefined values in front of the writing position. 

The measurement is terminated either when the set number of measurements is 
reached or when the string is full. However, the string does not necessarily reach its 
maximum length: when there are still 2 free bytes in the string at a 4-channel 
measurement with 8-bit resolution, the measurement does not take place, because at 
each measurement 4 bytes are created. The string length thus remains 2 bytes under 
the maximum length. 

 
 

! 



 

39 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

When all settings have been made with the help of the User-Function-Codes the 
measurement in a string is started as follows: 

PUT #D, String [, Offset, number, Growth_Flag ] 

D is a variable, a constant, or an expression of the data type BYTE, 
WORD, LONG in the range between 0…63 and stands for the 
device number of the driver. 

String is the string, into which the measured values are written. The 
string needs to be static, i.e. global or task-local. Note: the 
string is set to EMPTY at the beginning. 

Offset is a variable, a constant or an expression of the type BYTE, 
WORD or LONG and determines the offset, when the measured 
values are to be written into the string from a position unequal 
to 0. Default = 0 (beginning of string). 

Number is a variable, a constant or an expression of the type BYTE, 
WORD or LONG and determines the number of measurements. 
For multi-channel measurements, more bytes per measurement 
are produced accordingly. 10-bit or 12-bit measurements 
produce 2 bytes per measurement and per channel. When 
quantity is 0, the measurement continues to the end of the 
string. 

Growth_Flag is a variable, a constant or an expression of the type BYTE, 
WORD, or LONG and determines whether the size of the string 
grows steadily with the measurements or it is set after finishing 
the measurement. 
0: string grows steadily 
Unequal 0: string size set after measurements. 

When the specifications Offset, quantity or Growth_Flag are missing, the settings 
that have been made with the User-Function-Code before are valid. When the 
specifications Offset, Quantity or Growth_Flag are present, they are only valid for this 
measurement and do not influence the general settings. 

When the set quantity of measurements leads to exceeding the string size, the 
measurement is stopped when there is no more space in the string for a further 
measurement. This can be the case before reaching the maximum string length, when 
less than 8 bytes are available in a string for a 4-channel 10-bit measurement (8 
bytes per measurement), e.g. 

The measurement can be aborted with the User-Function-Code UFCO_AD2_STOP. 



 

40 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Program sample: 

'--------------------------------------------------------------------- 

' Name: ANALOG2S.TIG 

'--------------------------------------------------------------------- 

#INCLUDE DEFINE_A.INC                   ' general definitions 

#INCLUDE UFUNC3.INC                     ' User Function Codes 

STRING M$ (150)                         ' measurement value string (global!) 

 

TASK MAIN                               ' start task MAIN 

' install LCD-driver (BASIC-Tiger) 

  INSTALL DEVICE #LCD, "LCD1.TD2" 

' install LCD-driver (TINY-Tiger) 

'  INSTALL DEVICE #LCD, "LCD1.TD2", 0, 0, 0, 0, 0, 0, 80h, 8 

' install TIMER-A driver (time basis timer: 1001Hz) 

  INSTALL_DEVICE #TA, "TIMERA.TD2", 3, 156 

' install ANALOG-2 driver 

  INSTALL_DEVICE #AD2, "ANALOG2.TD2" 

 

  M$=""                                 ' measurement-string empty 

  PUT #AD2,#0,#UFCO_AD2_PSCAL, 5        ' pre-scaler: 1001/5=200S/sec 

  PUT #AD2,#0,#UFCO_AD2_RESO, 8         ' resolution 

  PUT #AD2,#0,#UFCO_AD2_SCAN, 4         ' number of channels 

  PUT #AD2,M$,0,300,1                   ' starting pos., no of measurements 

                                        ' bigger than string! 

  K = 0                                 ' end when string is full 

  WHILE K < 148                         ' string does not reach length 150 

    K = LEN(M$)                         ' but 4Ch x 37 = 148 

    PRINT #LCD, "<1>Length=";K 

  ENDWHILE 

                                        ' ---------------------------- 

  FOR I = 0 TO LEN(M$)-4 STEP 4         ' show STRING 

    PRINT #LCD, "<1Bh>A<12><0><0F0h>0:";NFROMS(M$,I,1); 

    PRINT #LCD, "<1Bh>A<12><1><0F0h>1:";NFROMS(M$,I+1,1); 

    PRINT #LCD, "<1Bh>A<12><2><0F0h>2:";NFROMS(M$,I+2,1); 

    PRINT #LCD, "<1Bh>A<12><3><0F0h>3:";NFROMS(M$,I+3,1); 

    WAIT_DURATION 1000                  ' wait 1 sec. 

  NEXT 

  PRINT #LCD, "<1Bh>A<0><3><0F0h>ready"; 

END                                     ' end of task MAIN 

 
 



 

41 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Measurements with 12-bit 

For 12-bit resolution, the integration depth can be set (size of the internal 
integration buffer). The number of measurements can be reduced, when not every 
internally produced measurement value is transferred into the string or FIFO buffer. In 
that way, temporally more separated measurements are made, which are, however, 
adjusted through a certain integration depth. 

PUT #7, #0, #UFCO_AD2_RESO, 12  ' set 12-bit resolution 

PUT #7, #0, #UFCO_AD2_INTEG, 32 ' 32 bit integration buffer 

PUT #7, #0, #UFCO_AD2_ISAMP, 9  ' only every 9th measurement is selected 

                                ' the sample rate is divided by 9 

 

The larger the integration buffer, the more accurate the measurement. However, 
the low pass filter effect becomes larger, i.e. fast signal changes are filtered out. 

 
 



 

42 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Setting the sample-rate 

The measurement rate or sample-rate is deduced from the basic frequency of the 
device driver TIMERA. The pre-scaler of the device driver ANALOG2 divides the basic 
frequency for this purpose: 

Further information about setting the device-driver TIMERA can be found in the 
description of the time base driver. The pre-scaler is set with the User-Function-Code 
UFCO_AD2_PSCAL. Examples can be found further up under “Measuring in FIFO” and 
“Measuring in string”. 

This device driver together with the driver TIMERA can, with a ‘fast’ setting, use 
up so much of the CPU-performance, that other tasks are hindered very much. With 
the User-Function-Code UFCI_CPU_LOAD, the CPU load, caused only by this driver, 
can be queried. 

The driver cannot accept certain settings, which would lead to an overloading of 
the system. 

Please note: TIMERA must be installed before ANALOG2 can be installed. 

 
 

! 

 
Pre-Scaler 

of the 
device 

driver 

 
Area 

divider 1 

 
Divider-

factor 

 

xxMHz  
Area 

divider 2 

 
Area 

divider 3 

TIMERA Other device-

drivers 

Area clock 



 

43 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Measuring with trigger 

 
Measuring with trigger is activated with the User-Function-Code 

UFCO_AD2_TRIG_SAMPLE. When a value is set here, a trigger is used for sampling, to 
work without trigger again, this value simply has to be set to 0FFFFH. 

When measuring with trigger, first, there is endless sampling. When the end of 
the string is reached, writing continues at the beginning, in this case the string is a 
ring buffer, who continuously keeps the most recent values. The length of the string 
at this time is 0FFFFFFFFH. This does not correspond to the real length, but is a flag for 
the situation that the trigger event has not occurred yet. As soon as the string 
overflows for the first time, you will read out a 0 with the User-Function-Code 
UFCI_AD2_STRI_OVL. The most recent writing position can continually be queried with 
the User-Function-Code UFCI_AD2_STRI_WRITE. 

As soon as the measurement value in a channel exceeds the set trigger limit(s), 
the trigger event sets in. The length of the string now has the value 0FFFFFFFEH, so 
that it becomes clear that the trigger has already occurred. Now, exactly as many 
samples are done as were set in the User-Function-Code UFCO_AD_TRIG_SAMPLE, 
then the measurement is stopped. The length of the string is set to the position at 
which the trigger event occurred; the length thus is a marking. After that, the length of 
the string should be set back to the maximum length in the BASIC program. Now the 
string can be evaluated. A new measurement can be started normally at any time. 

 

 

 

Measuring with trigger is restricted to strings and not possible with FIFO !!! 



 

44 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Program sample: 

#INCLUDE DEFINE_A.INC                   ' general definitions 

#INCLUDE UFUNC3.INC                     ' user function codes 

 

#define UFCO_AD2_TRIG_SAMPLE 08AH 

#define UFCO_AD2_TRIG_HLEV 08BH 

 

#define MLEN 200 

#define TLEVEL 700 

 

STRING M$ (MLEN)                         ' measurement value string(global!) 

 

TASK MAIN                               ' start task MAIN 

' install LCD-driver (TINY-Tiger) 

'  INSTALL DEVICE #LCD, "LCD1.TD2", 0, 0, 0, 0, 0, 0, 80h, 8 

' install TIMER-A driver (time basis timer: 1001Hz) 

  INSTALL_DEVICE #TA, "TIMERA.TD2", 3, 156 

' install ANALOG-2 driver 

  INSTALL_DEVICE #AD2, "ANALOG2.TD2" 

 

  word t1,t2,t3,t4   ' trigger level 

   

  t1 = TLEVEL    ' set trigger level 

  t2 = TLEVEL    ' set trigger level 

  t3 = TLEVEL    ' set trigger level 

  t4 = TLEVEL    ' set trigger level 

 

  M$=""                                 ' measurement-string empty 

  PUT #AD2,#0,#UFCO_AD2_PSCAL, 0        ' no pre-scaler 

  PUT #AD2,#0,#UFCO_AD2_RESO, 10        ' resolution 

  PUT #AD2,#0,#UFCO_AD2_CHAN, 0         ' channel 

  PUT #AD2,#0,#UFCO_AD2_SCAN, 4         ' number of channels 

 

  PUT #AD2,#0,#UFCO_AD2_TRIG_SAMPLE, 10           ' samples after trigger 

  PUT #AD2,#0,#UFCO_AD2_TRIG_HLEV, t1, t2, t3, t4 ' set trigger for channels 

 

  PUT #AD2,M$    ' 

   

  K = 0FFFFH    ' init k 

  while k =   0FFFFH   ' wait for trigger 

    k = len(M$)    ' read out trigger flag 

  endwhile 

   

  set_len$(M$,MLEN)   ' measurement completed 

 

END                                     ' end of task MAIN 

 
 



 

45 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

The low level trigger works analog to this. When the measured value falls below 
the trigger level, the trigger event occurs. High level and low level triggers can be 
combined in any way; both can be used for one channel at the same time, as well. 

If a trigger is to be turned off for a channel, it is set to a limit value which can 
never be exceeded. For the low level trigger 0 is selected, for the high level trigger 
0FFFFH is selected, e.g. 

When the trigger measurement is activated, but all triggers are deactivated, the 
string is simply sampled into, which can of course be read out at any time, until the 
measurement is stopped manually. 

Please note: 

At the 8-bit trigger measurement only the lower 8 bit of the trigger level are taken 
into account. The value 100H thus corresponds to an 8-bit trigger value of 0! 

 
 



 

46 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

RTC1.TD2 
 

The device-driver ‘RTC1’ supports the internal real time clock. 

 
File name: RTC1.TD2 

INSTALL DEVICE #D, "RTC1.TD2" 

D is a constant, variable or an expression of data type WORD, 
LONG, BYTE in the range 0…63 and stands for the device number 
of the driver. 

 
Particularly the calendar function is new, and is much more comfortable than a 

“pure seconds” RTC, because no conversion has to be made anymore. The seconds 
are maintained for reasons of compatibility, however. At run-time, the calendar 
function is faster than the seconds function. 

 

The clock is build into the module and can be buffered through the battery input. 
This clock keeps running as long as it is buffered. 

The file ‘TIMECVT.TIG’ contains sample subroutines that convert the seconds 
counter into minutes, hours and dates. There are similar subroutines for setting the 
seconds counter. All sample subroutines concerning the clock in the file 
‘TIMECVT.TIG’ assume that the counter has started at 0.00 o’clock of January 1st, 
1980, with 0 seconds. You can set any starting point in your system; however, the 
available subroutines cannot be used anymore. 

The alarm function is supported only by the real-time-clock. Setting of the alarm 
time is done with secondary address 1 or 4. Setting of the alarm time causes the 
clock to switch the alarm pin to ‘high’ after a short delay. When the alarm time is 
reached, the real time clock switches the alarm pin of the BASIC-Tiger® module back 
to ‘low’. In contrast to Tiger 1, where to alarm time can be set in steps of 1 second, 
the alarm time for Tiger 2 is set in steps of 1 minute to a maximum of 1 month in 
advance. If the alarm time is to be set with secondary address 1 (in seconds), it is 
internally rounded down to the last full minute. 

 



 

47 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Secondary address Function 

0 Setting and reading the time (seconds) 

1 Setting the alarm time (seconds) 

3 Setting and reading the time (numerical string) 

4 Setting the alarm time (numerical string) 

5 Reading the time (clear text string) 

 
 



 

48 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

User-function-codes of the RTC1.TD2 

RTC1-user-function-codes and the corresponding answers of the driver: 

No. Symbol Description 

160 UFCI_RTC_STAT0 Status of the RTC chip 

  Answer of the driver: 

0 RTC_INITIAL State immediately after power-on 

1 RTC_INSTALLING Installing still continues 

2 RTC_NO_RTC No RTC hardware available 

3 RTC_PRESENT OK, RTC hardware present 

4 RTC_RETRY Repeated attempt to find RTC 

   

161 UFCI_RTC_STAT1 Status of the RTC device driver 

  Answer of the driver: 

0 RTC_READY Ready 

1 RTC_BUSY Busy 

   

162 UFCI_RTC_VOLTAGE Status voltage drop 

  Answer of the driver: 

0 RTC_READY There was no voltage drop, clock still running 
as initialized 

1 RTC_VOLTAGE_LOW Voltage of clock had been gone; it was 
initialized again at the install device. 

 
 

When comparing the read time with a reference time, always use the phrasing 
‘larger’, ‘smaller’, ‘larger or equal’ or ‘smaller or equal’, never use ‘equal’. The clock 
can occasionally skip a second due to internal corrective factors. 

 
 

! 



 

49 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Setting and reading the time in numerical strings 

 

Byte-
No. 

Description 

0 Hours 

1 Minutes 

2 Seconds 

3 Day (of month) 

4 Month 

5 Year (low byte) 

6 Year (high byte) 

7 Day of week (Sunday=0, Wednesday=3) 

 
 
PUT #D, #3, date_string 

D is a constant, variable or an expression of data type WORD, 
LONG, BYTE in the range 0…63 and stands for the device number 
of the driver. 

date_string is a constant, variable or an expression of data type STRING and 
contains the date with time, formatted as in the table above. 
Byte 7 is a dummy byte; the day of week will be calculated 
automatically by the device driver since version 1.01d. 

 
Since RTC1.TD2 1.01d the day of week will be calculated automatically by the 

device driver. You need to pass 7 Bytes to set the time. Every further byte will be 
ignored. 

 
GET #D, #3, 0, date_string 

D is a constant, variable or an expression of data type WORD, 
LONG, BYTE in the range 0…63 and stands for the device number 
of the driver. 

date_string is a constant, variable or an expression of data type STRING and 
contains the date with time, formatted as in the table above. 

 

! 



 

50 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Reading the time as a clear text string 

 
For some applications it is advisable to read out the clock in clear text. Here date 

and time are already formatted for e.g. the output on an LCD. The formatting is as 
follows: 

 
"hh:mm:ss:dd:mon:yyyy:dow" 

 
For example: 

"17:17:00:13:Jun:2006:Tue" 

 
 
 
GET #D, #5, 0, date_string 

D is a constant, variable or an expression of data type WORD, 
LONG, BYTE in the range 0…63 and stands for the device number 
of the driver. 

date_string is a constant, variable or an expression of data type STRING and 
contains the date with time, formatted in clear text. This string 
can also be output on the LCD. The string has to be able to hold 
at least 24 bytes! 

 
 



 

51 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Setting the alarm time with numerical string 

 
If one wants to set the alarm time calendrical, it can be set one month in 

advance. The day of the alarm (might be in this month or in the next) has to be given 
together with the time. Then the alarm is set off. Minutes are the smallest units of 
resolution for the alarm in Tiger 2. 

 

Byte-
No. 

Description 

0 Hours 

1 Minutes 

2 Day (of month) 

 
 
PUT #D, #4, alarm_string 

D is a constant, variable or an expression of data type WORD, 
LONG, BYTE in the range 0…63 and stands for the device number 
of the driver. 

alarm_string is a constant, variable or an expression of data type STRING and 
contains the time of the alarm formatted according to the table 
above. 



 

52 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Setting and reading the time in seconds 

 
 
PUT #D, #0, seconds 

D is a constant, variable or an expression of data type WORD, 
LONG, BYTE in the range 0…63 and stands for the device number 
of the driver. 

seconds is a constant, variable or an expression of data type LONG and 
contains the number of seconds to which the RTC is to be set. 

 
 
 
GET #D, #0, 0, seconds 

D is a constant, variable or an expression of data type WORD, 
LONG, BYTE in the range 0…63 and stands for the device number 
of the driver. 

seconds is a variable of data type LONG and contains the current number 
of seconds in the RTC. 



 

53 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Setting the alarm time in seconds 

 
If the alarm is to be set in seconds, it can be set one month in advance. The 

number of seconds is specified. Then the alarm is set off. Minutes are the smallest 
unit of resolution in the Tiger 2. Should the seconds not amount to a full minute, it is 
rounded down to the last full minute!! 

 
 
PUT #D, #1, seconds 

D is a constant, variable or an expression of data type WORD, 
LONG, BYTE in the range 0…63 and stands for the device number 
of the driver. 

seconds is a constant, variable or an expression of data type LONG and 
contains the time of the alarm in seconds. 

 
 



 

54 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Sample program: 

#define UFCI_RTC_VOLTAGE 162 

#define RTC_VOLTAGE_LOW 1 

 

 

task main 

  install_device #0, "LCD1.TD2" 

  install_device #1, "RTC1.TD2" 

  string DATE$ 

  long secs 

  long voltage 

 

 

 

 

  GET #1, #0, #UFCI_RTC_VOLTAGE,0, voltage ' get voltage low bit 

  IF voltage = RTC_VOLTAGE_LOW THEN 

    PRINT #0,"<01>";    ' cursor to top left 

    PRINT #0, "Voltage low"   ' print to LCD 

    PRINT #0, "Set time"   ' print to LCD 

 

  '                00:00:00   01.Jan.     1980   Wednesday 

    PUT #1, #3, "<0h><0h><0h><1h><01H><0BCH><7H><3H>" 

  ' set alarm:      00:02   01.(Jan.) 

    PUT #1, #4, "<00H><02H><01H>" 

  ELSE 

    PRINT #0,"<01>";    ' cursor to top left 

    PRINT #0, "No voltage low"   ' print to LCD 

    PRINT #0, "Don't set time"   ' print to LCD 

  ENDIF 

   

  wait_duration 2000 

 

  while 1=1 

    GET #1,#5, 0, DATE$   ' Get date as printable string 

    GET #1,#0, 0, secs   ' Get date in seconds 

    PRINT #0,"<01>";   ' cursor to top left 

    PRINT #0, DATE$   ' print to LCD 

    PRINT #0, secs   ' print to LCD 

    wait_duration 500 

  endwhile 

 

end 

 
 



 

55 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

MF2_xxxx.TD2 – MF-II PC keyboard 
 

The device-driver ‘MF2_xxxx’ enables the connection of a PC keyboard of type 
MF-II. External components are, apart from the MF-II keyboard connector, only two 
resistors. 

File name: MF2_84pp.TD2 

INSTALL DEVICE #D, "MF2_84Pp.TD2" 

D is a constant, variable or an expression of data type WORD, 
LONG, BYTE in the range 0…63 and stands for the device number 
of the driver. 

Pp in the file name stands for: 
P: internal port 
p: pin for data line of the keyboard. 

 
For Tiger 2, the clock line is always on L84 ! 

The lines for clock and data are provided with pull-up resistors against VCC. The 
power supply of the keyboard is provided at the keyboard connector. The power 
requirements are described in the data sheets of the keyboard. 

Size and filling level of the input buffer as well as the version of the driver can be 
queried with the help of the User-Function-Codes. 

 
 



 

56 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Example of a connection of a PS/2 MF-II keyboard (view on PS/2 plug): 

 

 
 



 

57 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Since an MF-II keyboard does not send ASCII-codes, but requires further steps of 
code conversion, quite complex measures are necessary to get the desired keyboard 
function. As a basis, and in addition to the sample program, several include-files are 
provided as well, that can be adjusted to individual needs. MF2_TR.INC is the only 
include file to be integrated into the application. MF2_TR.INC itself integrates all 
further include files. 

The application calls up subroutines that can be found in the files MF2_TR.INC, 
MF2_TR_D.INC. Here the conversion to ASCII takes place. In the next layer 
MF2_PH.INC, MF2_PH_D.INC the physical connection to the driver and thus to the 
keyboard is made. 

The initialization ‘InitKeybTables’ is called up once before the usage of the 
keyboard. The argument is the number of the language (1=English, 2=German, 
3=English and German). 

The subroutine ‘InitKeybDev’ with the device number as argument (WORD) is 
also called up once. When the driver is embedded several times, then ‘InitKeybDev’ 
with the according device number is also called up several times. 

The subroutine ‘GetAsciiKey’ provides in a WORD: 

 when no character: 0000h 
 when ASCII character: character in low-byte, scan code in high-byte 
 when key with extended code: 0 in low-byte, scan code in high-byte 



 

58 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

The subroutine ‘CheckKeybFlags’ provides information about the present state 
of the special keys like STRG, ALT, SHIFT, etc. 

Byte 0 

Bit 0: right Shift-key pressed 
Bit 1: left Shift-key pressed 
Bit 2: Strg-key pressed 
Bit 3: ALT-key pressed 
Bit 4: Scroll-Lock is activated 
Bit 5: Num-Lock is activated 
Bit 6: Caps-Lock is activated 
Bit 7: Insert is activated 

Byte 1 

Bit 0: left Strg-key pressed 
Bit 1: left ALT-key pressed 
Bit 2: System-Request is pressed 
Bit 3: Pause-key is toggled 
Bit 4: Scroll-Lock-key pressed 
Bit 5: Num-Lock-key pressed 
Bit 6: Caps-Lock-key pressed 
Bit 7: Insert-key pressed 

Byte 2 (LED-display) 

Bit 0: Scroll-Lock-display 
Bit 1: Num-Lock-display 
Bit 2: Caps-Lock-display 
further bits are not used 

Byte 3 

Bit 0: last code was the ‘E1 hidden code’ 
Bit 1: last code was the ‘E0 hidden code’ 
Bit 2: right Strg-key pressed 
Bit 3: right ALT-key pressed 
further bits are not used 

 
 



 

59 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

There are several useful subroutines in ‘MF2_PH.INC’: 

Subroutine (arguments) Function 

ResetKbd ( WORD wDevId ) RESET Keyboard 

SetKbdTypematicRate 
 ( WORD wDevId; BYTE bTpRate ) 

Sets typematic rate of the MF-II 
keyboard 

SetKbdIndicators 
 ( WORD wDevId; BYTE bLEDsMask ) 

Sets the LED’s of the MF-II keyboard 
(bLEDsMask, 0=off, 1=on): 
Bit 0: Scroll-Lock 
Bit 1: Num-Lock 
Bit 2 Caps-Lock 

ClearKbdBuffer ( WORD wDevId ) Deletes the MF-II keyboard buffer 

GetKbdScanCode 
 ( WORD wDevId; VAR BYTE bCode ) 

Takes a character from the keyboard 
buffer. 
When the buffer is empty, ‘bCode’ 
remains unchanged. 

SetKbdScanCodeTable 
 ( WORD wDevId; BYTE bTableId ) 

Sets in ‘bTableId’ the scan-code table 
for the keyboard 

GetKbdBufferFillSize 
 ( WORD wDevId; VAR LONG lBufSize ) 

Reads the filling level of the keyboard 
buffer 

 
 

All subroutines for the MF-II keyboard are re-entrant, i.e. several tasks can use 
them at the same time. 

Remark: The MF-II subroutines are written for the scan code set 1. 

The following sample program shows, that the usage of the keyboard has 
become easy with the provided include files from the user’s point of view. 

 
 



 

60 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Sample program: 

'-------------------------------------------------------------------- 

' Name: MF2_1.TIG 

' Shows the usage of an MF-II keyboard at the BASIC-Tiger 

'-------------------------------------------------------------------- 

' connect 4 lines of the keyboard 

'   MF-II          Tiger 

'     GND  <---->  GND 

'     +5V  <---->  Vcc 

'   CLOCK  <---->  L80 plus 10...22KOhm --> Vcc 

'    DATA  <---->  L81 plus 10...22KOhm --> Vcc 

' 

'-------------------------------------------------------------------- 

user_var_strict                   ' unconditional variable .declaration 

#include UFUNC3.INC               ' user function codes 

#include DEFINE_A.INC             ' general symbol definitions 

#include MF2_TR.INC               ' subroutines of the transport layer 

 

WORD wKeybDevId1                  ' keyboard device number 

LONG lKeybExtFlags1               ' keyboard flags 

BYTE bKeybActLang1                ' keyboard layout (language) 

 

'-------------------------------------------------------------------- 

TASK Main 

  WORD wKey                       ' key (WORD) 

  BYTE bIsActive                  ' 

  LONG lComplexMask               ' 

 

' install LCD-driver (BASIC-Tiger) 

  INSTALL DEVICE #LCD, "LCD1.TDD" 

' install LCD-driver (TINY-Tiger) 

'  INSTALL DEVICE #LCD, "LCD1.TDD", 0, 0, 0, 0, 0, 0, 80h, 8 

 

  INSTALL DEVICE #KEYB1, "MF2_8081.TDD" ' L80=clock, L81=data 

 

  wKeybDevId1 = KEYB1             ' initialize keyboard variable 

  lKeybExtFlags1 = 0 

  bKeybActLang1 = LANG_GERMAN 

'  bKeybActLang1 = LANG_ENGLISH 

 

  CALL InitKeybTables( bKeybActLang1 ) ' Init step 1 

  CALL InitKeybDev( wKeybDevId1 )      ' Init step 2 

 

  LOOP 9999999                    ' many loops 

    ' Read a character from the buffer, translate to ASCII 

    CALL GetAsciiKey(wKeybDevId1, lKeybExtFlags1, bKeybActLang1, wKey) 

    IF wKey <> 0 THEN             ' when valid character 

      PRINT #LCD, CHR$(wKey);     ' display on LCD 

    ENDIF 

  ENDLOOP 

END 

 
 



 

61 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

CAN-Bus 
 

The device driver ‘CAN1_xx.TD2’ supports the internal CAN interface of the TINY-
Tiger 2 module. 

This section contains: 

 Description of the device driver CAN1_xx.TD2 
 CAN messages in the I/O-buffer of the driver 
 CAN User-Function codes  
 Bus timing and transfer rate 
 Error register 
 Receive filter with Code and Mask 
 Sending CAN messages 
 Receiving CAN messages 
 I/O buffer 
 Automatic bit rate detection 
 CAN-bus hardware connection example 
 A short introduction to CAN 
 Error situations 
 References to CAN 

 
 



 

62 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Description of the device driver CAN1_xx.TD2 

 
This device driver enables input and output on the CAN-bus in connection with 

the TINY-Tiger 2-module. The parameters of the CAN interface can be specified during 
installation of the driver. Some parameters can also be changed during the running 
time by commands to the driver. 

File names: CAN1_K8.TD2 (with 8K buffers) 
CAN1_K1.TD2 (with 1K buffers) 
CAN1_R1.TD2 (with 256 byte buffers) 

INSTALL DEVICE #D, "CAN1_xx.TD2", “Code, Mask, Bt0, Bt1, Mod, Oc” 

D is a constant, variable or expression of the data type BYTE, 
WORD, LONG in the range 0...63 and stands for the device 
number of the driver. 

Code is a parameter to determine the Access-Code. 'Code' is always 
4 bytes long. The range of values for the Access code with 
standard frames is 0...7FFh and with extended frames 0...1FFF 
FFFF. 
Standard value: 0 

Mask is a parameter to determine the acceptance filter. 'Mask' is 
always 4 bytes long. 
Standard value: 0FFFFFFFFh 

Bt0 (Bustiming-Register-0) is a parameter to determine the baud 
rate-prescalers and the synchronisation step (1 byte). This 
determines the transfer rate together with Bt1. 
Standard value: 0 

Bt1 (Bustiming-Register-1) is a parameter to determine the Bus-
Timing and the number of samples during receipt (1 byte). This 
also determines the transfer rate together with Bt0. 
Standard value: 2Fh (Tseg1=15, Tseg2=2) 

Mod is a parameter to determine the mode (1 byte) . 
Standard value: 0 
 



 

63 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Bit Symbol if bit set (‘1’) 

1 CAN_LISTEN Listen-Only-Mode 

2 CAN_SELFTEST Selftest-Mode 

3  reserved 

4 CAN_SLEEP Sleep-Mode 

0,5,6  reserved 

 
If the Listen-Only mode is installed the driver tries to 
automatically recognize the bit rate on the bus on the basis of a 
table with predefined bit rates.  

Outctrl is a dummy parameter. Standard value is 1Ah. 

Example for an installation for 500 kBit: 

 

  install_device #CAN, "CAN1_K1.TD2", & 

  0,0,0,0, &                      ' access code 

  0ffh,0ffh,0ffh,0ffh, &          ' access mask 

  0,2Fh, &                        ' bustim1, bustim2 

  0,1Ah                           ' mode, outctrl 

 
 



 

64 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

CAN messages in the I/O-buffer of the driver 

 
The I/O buffers of the Tiger-BASIC-CAN device driver always contains complete 

CAN messages and no further bytes. A CAN message starts with the Frame-Info-byte, 
which determines whether this is a message with an 11 or 29-Bit-Identifier and how 
many data bytes are contained therein. The Frame-Info-Byte also contains the RTR-bit. 
This is followed by 3 Identifier-bytes (standard frame) or 5 Identifier-bytes (extended 
frame) and then the data bytes depending on the frame type. A CAN message can 
transfer 0...8 bytes as useful data. 

The Frame-Info-Byte also contains information on 

 the frame type (11 or 29 ID-Bits) 
 the number of data bytes (0...8) 
 whether this is a Remote-Transmit-Request 

The Identifier can  

 be 29 bits long and the occupies 4 bytes in the buffer 
 be 11 bits long and then occupies 2 bytes in the buffer 

A standard frame occupies a maximum of 11 bytes, an extended frame a 
maximum of 13 bytes in the buffer. If the device driver does not have at least 
13 bytes free in the buffer free during receipt the message will be rejected and an 
error registered 'Buffer overflow'. Between 341 messages (only standard frames 
without data) and 78 message (only extended frames, all with 8 data bytes) fit in a 
1kByte buffer depending on the length of the individually received CAN message. 

 
 



 

65 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Standard frame 

 
The illustration shows the structure of the standard frame with enlarged Frame-

Info-Byte (top) and the ID-byte (enlarged bottom). The length of the message is set 
automatically by the device driver. The 11 ID-bits must first be flush left with the 
highest-order bit in the two bytes, as shown in the illustration. 

0 RTR 0 0 DLC3 DLC2 DLC1 DLC0

info ID1 ID2 data0 data1 data2 data3 data4 data5 data6 data7

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 0 0 0 0 0

4 Bits geben Anzahl der

Datenbytes in der Message

an. Maximal 8

Frame-Format: 0

Remote Transmit Request

CAN-Message mit insgesamt 11 Bytes

 

Structure of the 'Standard Frame' 

Standard Frame, Info-bits: 

FF Frame-Format bit, here FF=0. 
0: Standard Frame 1: extended Frame 

RTR Remote Transmit Request, send request. Messages with a set 
RTR-bit will be responded directly by the driver, if a reply is 
specified. 

DLC 4 bits specify the number of data bytes in the message (0...8). 
This bit sets the device driver. 

 

The 11-Bit-Identifier of the CAN message can be found in both ID-bytes, offset by 
5 bits to the left. The format here is 'high-byte first’, unlike the WORD variables in 
Tiger-BASIC which are 'low-byte first'. 

The ID-bytes are followed by as many data bytes as specified by DLC. 



 

66 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Example for the generation of standard frames in Tiger-BASIC: 

 

t_id = 7FFh shl 5                  ' Transmit-ID, left-aligned in WORD 

' Standard frame with frame info byte, 2 empty ID bytes, data 

msg$ = "<0><0><0>" + data$ 

msg$ = ntos$ ( msg$, 1, -2, t_id ) ' fit in ID with high-byte first 

                                   ' length is set by driver 

print #CAN, msg$;                  ' PRINT, with semicolon!! 

' or 

put #CAN, msg$ 

 
 



 

67 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Extended Frame 

 

1 RTR 0 0 DLC3 DLC2 DLC1 DLC0

info ID1 ID2 data0 data1 data2 data3 data4 data5 data6 data7

ID

10
ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 0 0 0

4 Bits geben Anzahl der

Datenbytes in der Message

an. Maximal 8

Frame-Format: 1

Remote Transmit Request

CAN-Message mit insgesamt 13 Bytes

ID3 ID4

ID

11

ID

12

ID

13

ID

14

ID

15

ID

23

ID

22

ID

21

ID

20

ID

19

ID

18

ID

17

ID

16

ID

24

ID

25

ID

26

ID

27

ID

28

 

 

Structure of the 'extended Frame' 

Extended Frame, Info-Bits: 

FF Frame-Format-Bit, here FF=1. 
0: Standard Frame 
1: extended Frame 

RTR Remote Transmit Request, send request. Messages with a set 
RTR-bit will be responded directly by the driver, if a reply is 
specified. 

DLC 4 bits specify the number of data bytes in the message (0...8). 

The 29-Bit-Identifier of the CAN message can be found in the 4 ID-bytes, offset 
by 3 bits to the left. The format here is 'high-byte first’, unlike the LONG-variables 
which are 'low-byte first'. 

The ID-bytes are followed by as many data bytes as specified by DLC. 

 



 

68 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Example for the generation of extended frames in Tiger-BASIC®: 

 

t_id = 1FFFFFFFh shl 3             ' Transmit-ID, left-aligned in LONG 

' extended frame with frame info byte, 4 empty ID bytes, data 

msg$ = "<80h><0><0><0><0>" + data$ 

msg$ = ntos$ ( msg$, 1, -4, t_id ) ' fit in ID with high-byte first 

                                   ' length is set by driver 

print #CAN, msg$;                  ' PRINT with semicolon!! 

' or 

put #CAN, msg$ 

 
 



 

69 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

CAN User-Function-Codes 

 
User-Function-Codes for inquiries (Instruction GET): 

No Symbol 
Prefix UFCI_ 

Description 

1 UFCI_IBU_FILL No. of bytes in input buffer (Byte) 

2 UFCI_IBU_FREE Free space in input buffer (Byte) 

3 UFCI_IBU_VOL Size of input buffer (Byte) 

33 UFCI_OBU_FILL Number of bytes in output buffer (Byte) 

34 UFCI_OBU_FREE Free space in output buffer (Byte) 

35 UFCI_OBU_VOL Size of output buffer (Byte) 

65 UFCI_LAST_ERRC Last error code 

99 UFCI_DEV_VERS Driver version 

144 UFCI_CAN_EERR Byte 0+1: No. of receive errors 
Byte 1+2: Buffer overflow count 
both counters are reset after reading  

152 UFCI_CAN_MODE reads CAN register MODE 

153 UFCI_CAN_STAT reads CAN register STAT 

154 UFCI_CAN_CODE get CAN register CODE0 

155 UFCI_CAN_MASK get CAN register MASK0 

158 UFCI_CAN_RXERR reads copy from ‘rx error counter register’ 

159 UFCI_CAN_TXERR reads copy from ‘tx error counter register’ 

161 UFCI_CAN_BUSY get CAN busy state 

99 UFCI_DEV_VERS Driver version 

 
 



 

70 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

User-Function-Codes for output (Instruction PUT): 

No Symbol 
Prefix: UFCO_ 

Description 

1 UFCO_IBU_ERASE Delete input buffer 

33 UFCO_OBU_ERASE Delete output buffer 

136 UFCO_CAN_MODE sets CAN register MODE 

138 UFCO_CAN_CODE sets CAN register CODE 

139 UFCO_CAN_MASK sets CAN register MASK 

140 UFCO_CAN_BUSTIM0 sets CAN register BUSTIM0 

141 UFCO_CAN_BUSTIM1 sets CAN register BUSTIM1 

142 UFCO_CAN_CMD set CAN register CMD 

143 UFCO_CAN_EWL set CAN error warning limit register 

162 UFCO_CAN_LAM sets local acceptance  mask (only channel-16) 

176 UFCO_CAN_RESET CAN soft reset 

193 UFCO_CAN_RESRM set CAN-Chip in RUN mode 

 
 



 

71 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Bus-Timing and transfer rate 

 
The transfer rate is determined by the length of a bit. A bit is made up of three 

sections which in turn consist of individual time segments: 

 Sync-Segment, always one time segment long. 
 TSEG1 is between 5 and 15 time segments long. The bit is sampled during 

receipt within Tseg1. 
 TSEG2 is between 2 and 7 time segments long. 

Sync

Seg
TSeg1 TSeg2

Sync

Seg

nominal bit time

tseg1 tseg2

tscl

sample point(s)

Ausgang des Baudrate-Prescalers

tsyncseg

 

Structure of a bit: 

The unit of a time segment is determined in the Bustiming-Register 0, the 
number of time segments which make up TSEG1 and TSEG2 in the Bustiming-
Register 1. 

 
 



 

72 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Bustiming-Register 0 

The length of a time segment 'tscl' is determined in the Bustiming-Register 0, by 
the baud rate-prescaler BRP. The 6-bit prescaler can assume values between 0 and 
31. 

1 Time segment: t
scl
 = 0,1 * (BRP+1) µsec 

 

1 Bit time = Tsync + Tseg1 + Tseg2 
 

The upper bits in this register determine the synchronization step. The value SJW 
determines the maximum number of clock cycles by which a bit may be shortened or 
extended to compensate phase differences between different bus controllers through 
resynchronization. 

Bustiming-Register 0 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 

 
 

Bustiming-Register 1 

Bustiming-Register-1 determines the number of time segments in Tseg1 and 
Tseg2 and how often the received bit is sampled (once or three times). 

Bustiming-Register 1 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

SAM TSEG2.2 TSEG2.1 TSEG2.0 TSEG1.3 TSEG1.2 TSEG1.1 TSEG1.0 

 
SAM=1: The bus is sampled three times. Recommend for slow and 

medium-speed buses if filtration of spikes on the bus brings 
advantages. 

SAM=0: The bus is sampled once. Recommend for fast buses. 

 
Which values of Tseg1 and Tseg2 guarantee a safe receipt depends on the 

physical characteristics of the transmission medium, including driver components, 
optical coupling device. These characteristics finally determine the achievable baud 
rate and line length. 



 

73 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Some common settings can be found in the following table (achievable bus 
lengths are only references): 

Bit rate Bustim0 Bustim1 Bt1 
Tseg1 

Bt1 
Tseg2 

Bus 
length 

1 Mbit 0 45h 5 4 25m 

500 kBit 0 5Ch 12 5 100m 

250 kBit 1 5Ch 12 5 250m 

125 kBit 3 5Ch 12 5 500m 

100 kBit 4 5Ch 12 5 650m 

 
 
The bit rate can be specified during installation of the driver by parameters. 

During the running time the Bustiming settings can be changed using User-Function-
Codes. 
Note: the output buffer should be empty whilst setting Bustim0 or Bustim1 since the 
internal CAN chip is temporarily in the rest mode. It is also temporarily not ready to 
receive. 

Example: set 100kBit acc. to above table during the running time: 

 

PUT #CAN, #0, #UFCO_CAN_BUSTIM0, 4 

PUT #CAN, #0, #UFCO_CAN_BUSTIM1, 5CH 

 
 



 

74 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Error Register 

 
Both the correct receipt of a CAN message and faulty statuses on the CAN bus 

trigger a Receiver-Interrupt. During the Interrupt-processing the device driver 
determines whether a fault-free package has been received or whether errors have 
occurred. In any case the values associated with error statuses will be refreshed and 
be given a User-Function code for the next error inquiry. If further errors occur before 
the error inquiry the later error code will be saved in each case. 

 
The following error inquiries are possible: 

User-Function-Code  Bit(s) Meaning 

UFCI_CAN_STAT 0 Receive Buffer Status: 0: empty 1: full 

 1 Receive Overrun: 0: no 1: yes 
Data-Overrun. Occurs if a new CAN-Message is 
received although there is not enough space in 
the receive area of the CAN-Chip. This does not 
relate to the buffer of the device driver. 

  2 Transmit Buffer: 0: blocked 1: free 

 3 Send: 0: active 1: done 

 4 Receive: 0: free 1: active 

 5 Send: 0: free 1: active 

 6 Error: 0: ok 
1: one or both error counters (RXERR, TXERR ) 
have exceeded the value set for Error-Warning-
Limit. 

 7 Bus-Status: 0: ON 1: OFF 
If OFF the CAN-Hardware no longer takes part in 
activities on the bus. 

UFCI_CAN_RXERR 0...7 Rx-error counter. counts up with receive errors 
and back down again to 0 with a correct receipt. 
See also Error-Warning-Limit 

UFCI_CAN_TXERR 0...7 Tx-error counter. counts up with send errors and 
back down again to 0 if sent correctly. 
See also Error-Warning-Limit 

 
 



 

75 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Arbitration-Lost error 

 
The inquiry of the ALC-Register can provide more information about that bit 

position at which the bus access was lost. At first the highest-order Identifier bit 
appears on the CAN bus after the start bit. 10 further Identifier bits follow in the case 
of a standard frame. Since the 'Extended Frames’ must be compatible with the 
standard frames these 10 Identifier bits are always followed by an RTR-bit. The next 
bit now decides whether this is a Standard-Frame or an 'Extended Frame’. It is called 
the IDE bit, Identifier Extension. The remaining 18 Identifier bits follow a reserved bit 
in the case of the 'Extended Frame’. The Arbitration-Lost-Register can follow 
arbitration up to the 31st bit, i.e. up to the RTR-bit of an 'Extended Frame’. 

Since all participants access the bus simultaneously, the first recessive bit 
which is overwritten by a dominant bit shows the lost bus access. The bit position is 
hereby a measure of the priority of the participant which prevents bus access. 

Remember: The buffered value is refreshed in the DEVICE at every Interrupt. 
Since the ALC register of the CAN hardware is reset when it is read, an Arbitration-Lost 
error  which has occurred and been registered once will be overwritten at the next 
correct receipt. Single Arbitration-Lost statuses can therefore only be recorded if there 
is sufficient time to read out the value from the driver. Repetitive Arbitration-Lost 
statuses are recorded statistically. 

 
 



 

76 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

RXERR receive error counter 

The receive error counter is read out at every CAN-Interrupt in the DEVICE driver. 
The last value can be inquired with a User-Function code. The inquiry doesn't change 
the meter reading. 

 

... 

get #CAN, #0, #UFCI_CAN_RXERR, 1, rx_err 

... 

 
If the meter reading exceeds the set Error-Warning limit (standard: 96) bit 6 will 

be set in the status register. 

If the meter reading exceeds 127, the internal CAN chip switches to the 'Bus-
Error-Passive' mode. In this mode the CAN-hardware sends no further error telegrams 
but continues to send and receive its telegrams. Error-free data telegrams on the bus 
reduce the error counter again. 

 
 



 

77 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

TXERR send error counter 

The send error counter in the device driver will be read out in the event of Error-
Interrupts. The last value can be inquired with a User-Function code. The inquiry 
doesn't change the meter reading. 

 

... 

get #CAN, #0, #UFCI_CAN_TXERR, 1, tx_err 

... 

 

If the meter reading exceeds the set Error-Warning limit (standard: 96) bit 6 will 
be set in the status register. 

If the meter reading exceeds 127, the internal CAN chip switches to the 'Bus-
Error-Passive' mode. In this mode the CAN-hardware sends no further error telegrams 
but continues to send and receive its telegrams. Error-free data telegrams on the bus 
reduce the error counter again. 

If the meter reading exceeds 255, the CAN chip switches to the 'Bus-Off status'. 
This status can only be quit by a hardware reset or software reset. 

 
 



 

78 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Receive filter with Code and Mask 

The set Access-Code together with the Access-Filter determines which CAN-
messages are received. The Access-Mask sets bits to 'don’t care' if necessary. The 
bits of the received Identifiers which are not 'don’t care’ must correspond with the 
code so that the message can be received. 

There now follow instructions for: 

 Set Access-Code and Access-Mask 
 Standard-Frame with Single filter configuration 
 Extended Frame with Single filter configuration 
 Standard-Frame with Dual filter configuration 
 Extended Frame with Dual filter configuration 

The received CAN-message can be present as a Standard-Frame or as an 
Extended-Frame. 

 
 



 

79 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Set Access-Code and Access-Mask 

Access-Code and Access-Mask are registers and part of the CAN hardware and 
are set during installation of the device driver. If no parameters are specified Access-
Code is set to 0 and Access-Mask to 0FFFFFFFFh so that all messages pass through 
the filter. 

The code and the mask can be seen as simple bit patterns or as numbers. For 
example, a LONG number is suitable to store the bits of the Access-Code or the 
Access-Mask . One problem here is that the CAN number starts with the highest-order 
byte, the Tiger-BASIC LONG number however with the lowest-order: 

CAN-Access-Code and Mask MSB   LSB 

     

Tiger-BASIC® LONG number LSB   MSB 
  

In addition the 11 bits and/or 29 bits are flush left in the 32 bit for the Identifier 
depending on the frame type. Numbers start, however, on the right with the lowest bit 
and have no 'don’t care’ bit to the right of this. There can be a zero to the left of a 
number, but this is not important. 

 

 

 

If you therefore wish to see the Identifier from the Access-Code as a number the 
bytes first have to be mirrored and 

 the value of the Access-Code shifted 21 bits (5+16) to the right with an 11-
Bit Identifier  

 the value of the Access-Code shifted 3 bits to the right with a 29-Bit 
Identifier. 



 

80 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

CAN-Access-Code and Mask MSB    LSB 

 
Mirror bytes:  

 
11-Bit-ID 

   

id = byte_mirr ( id, 4 )     

LONG intermediate result  LSB    MSB 

shift right to LSB:     

id shr 21      

Tiger-BASIC® LONG number LSB    MSB 
 

Conversely: if you hav110e a number and want to store it in a CAN register 
Access-Code or Access-Mask then 

 the bits in the number first have to be moved to the left 
 then the bytes in the number mirrored 

Remember that the Function NTOS$ can mirror the bytes by specifying a negative 
value as an argument for the number of bytes: 

 msg$ = ntos$ ( msg$, 1, -2, t_id )  inserts an 11-bit Identifier present as a 
WORD number with the ID-bits in the correct position into a string and 
hereby mirrors the bytes. 

 msg$ = ntos$ ( msg$, 1, -4, t_id )  does the same for a 29-bit Identifier, 
which is present as a LONG number with the ID-bits at the correct position. 

The sequence does not change in a string: 

id$ = “<1Fh><AAh><BBh><33h>“ 

or 

id$ = “1F AA BB 33“% 

Step the following example program to understand these conditions in the 
'Monitored expressions'. 



 

81 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Program example: 

 

'----------------------------------------------------------------- 

'Name: CAN_SET_FILTER.TIG 

'sets filter configuration 

'demostrates how to set accress code and access mask 

'in different variations 

'only one CAN-Tiger is necessary as nothing is sent or received 

'Please use the command 'Watches' from the menu 'View' 

 

'----------------------------------------------------------------- 

user var strict                   'check var declarations 

#INCLUDE UFUNC3.INC               'User Function Codes 

#INCLUDE DEFINE_A.INC             'general symbol definitions 

#INCLUDE CAN.INC                  'CAN definitions 

 

LONG ac_code, ac_mask 

STRING id$ 

 

'----------------------------------------------------------------- 

TASK MAIN 

  install_device #LCD, "LCD1.TDD" 'install LCD-driver 

  install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver 

    "12 34 56 78 &                'access code 

     EF FF FE FF &                'access mask 

     10 45 &                      'bustim1, bustim2 

     08 1A"%                      'single filter mode, outctrl 

 

  using "UH<8><8>   0 0 0 4 4"    'to display ID in whole program 

 

'show access code und access mask after installation 

  get #CAN, #0, #UFCI_CAN_CODE, 0, ac_code 

  ac_code = byte_mirr ( ac_code, 4 ) 'byte order mirrored for LONG 

  print_using #LCD, "<1>ac_code:";ac_code 

  get #CAN, #0, #UFCI_CAN_MASK, 0, ac_mask 'and read 

  ac_mask = byte_mirr ( ac_mask, 4 ) 'byte order mirrored for LONG 

  print_using #LCD, "ac_mask:";ac_mask 

'the same lines are in show_codemask 

  wait_duration 1000 

 

'see byte order ('watches' id$ and ac_code) 

  get #CAN, #0, #UFCI_CAN_CODE, 4, id$ 'test: read access code 

  get #CAN, #0, #UFCI_CAN_CODE, 0, ac_code 'and read into a LONG 

  wait_duration 1000 

 

 

  ac_code = byte_mirr ( (1FFFFFFFFh shl 3), 4 )'biggest access code 

  put #CAN, #0, #UFCO_CAN_CODE, ac_code 'and set 

  call show_codemask              'and display 

  wait_duration 1000 

 

'this is the same: 

  id$ = "FF FF FF F8"%            '1FFFFFFF left bound 

  put #CAN, #0, #UFCO_CAN_CODE, id$ 'and set 

  call show_codemask              'and display 

  wait_duration 1000 

 

'set new code for the following read test 



 

82 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

  ac_code = byte_mirr ( (12345678h shl 3), 4 ) 'becomes 0C0B3A291h 

  put #CAN, #0, #UFCO_CAN_CODE, ac_code 'and set 

  call show_codemask                    'and display 

  wait_duration 1000 

'step from here 

  get #CAN, #0, #UFCI_CAN_CODE, 0, ac_code 'see byte order 

  ac_code = byte_mirr ( ac_code, 4 )       'after each step 

  ac_code = ac_code shr 3 

  print_using #LCD, "<1>ac_code:";ac_code 

 

END 

 

 

'----------------------------------------------------------------- 

'displays access code and access mask an 

'----------------------------------------------------------------- 

SUB show_codemask 

  get #CAN, #0, #UFCI_CAN_CODE, 0, ac_code 

  ac_code = byte_mirr ( ac_code, 4 ) 'byte order mirrored for LONG 

  print_using #LCD, "<1>ac_code:";ac_code 

  get #CAN, #0, #UFCI_CAN_MASK, 0, ac_mask 'and read 

  ac_mask = byte_mirr ( ac_mask, 4 ) 'byte order mirrored for LONG 

  print_using #LCD, "ac_mask:";ac_mask 

END 

 
 



 

83 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Standard-Frame with Single-Filter configuration 

In the 'single filter’ mode with a Standard-Frame, all ID-bits are passed through the 
Access filter and compared with the set code. Only the ID Bits are compared, but NOT 
the RTR Bit or the data Bytes. 

 

In the example program CAN_FILTER_SS.TIG the Access-Code is set to 4EE0 0000 
after installation. The mask determine which bits of the set code are relevant. The 
value F11F FFFF has a total of 6 '0'-bits within the area of the Identifier (the 11 bit left-
adjusted)  which indicate that these bits in the message on the bus must correspond 
with the Access-Code so that the message will be received. The test shows that those 
values with an 'E' or 'F' in the second position and an 'E' in the third position  come 
through. Thus, exactly those messages whose bits match the relevant bits of the 
Access-Code will be received 

The illustration shows the Access-Code, Access-Mask and an Identifier as an 
example. Only the ID-bits are shown. The other bits in the example are 'don’t care’ 
any way: 

 

 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 

Code: 4EEh 0 1 0 0 1 1 1 0 1 1 1 

Mask: F11h 1 1 1 1 0 0 0 1 0 0 0 

x=not 
relevant 

x x x x 1 1 1 x 1 1 1 

ID: 0Eeh 0 0 0 0 1 1 1 0 1 1 1 

ID: 7Feh 0 1 1 1 1 1 1 1 1 1 1 

 

 D
B

2
.0

 

 D
B

2
.1

 

 D
B

2
.2

 

 D
B

2
.3

 

 D
B

2
.4

 

 D
B

2
.5

 

 D
B

2
.6

 

 D
B

2
.7

 

 D
B

1
.0

 

 D
B

1
.1

 

 D
B

1
.2

 

 D
B

1
.3

 

 D
B

1
.4

 

 D
B

1
.5

 

 D
B

1
.6

 

 D
B

1
.7

 

     R
T

R
 

 ID
0
 

 ID
1
 

 ID
2
 

 ID
3
 

 ID
4
 

 ID
5
 

 ID
6
 

 ID
7
 

 ID
8
 

Code Byte 3  LSB 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

MSB  Code Byte 0 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

Code Byte 1 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

Code Byte 2 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

unuse
d Mask Byte 3  LSB 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

MSB  Mask Byte 0 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

Mask Byte 1 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

Mask Byte 2 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

unuse
d 



 

84 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Program example: 

 

'----------------------------------------------------------------- 

'Name: CAN_Filter_SS.TIG 

'single filter configuration 

'sends standard frames with different IDs for filter test 

'receives filtered CAN messages and displays on LCD 

'knows standard and extended frame 

'connect a second CAN-Tiger with the same program 

'----------------------------------------------------------------- 

user var strict                   'check var declarations 

#INCLUDE UFUNC3.INC               'User Function Codes 

#INCLUDE DEFINE_A.INC             'general symbol definitions 

#INCLUDE CAN.INC                  'CAN definitions 

 

BYTE frameformat, msg_len, can_stat 

LONG ac_code, ac_mask 

LONG r_id                         'Rx ID 

STRING id$(4), msg$(13), data$(8) 

 

'----------------------------------------------------------------- 

TASK MAIN 

  BYTE ever                       'for endless loop 

  WORD ibu_fill                   'input buffer fill level 

 

  install_device #LCD, "LCD1.TDD" 'install LCD-driver 

  install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver 

    "4E E0 00 00 &                'access code 

     F1 1F FF FF &                'access mask 

     10 45 &                      'bustim1, bustim2 

     08 1A"%                      'single filter mode, outctrl 

 

'code and mask are set like this now: 

'01001110111 RTR --data-- --data-- code (relevant 11 bits) 

'11110001000  1  11111111 11111111 mask (bits 0 count, 1=don't care) 

'thus messages with the following bit pattern will pass: 

'01001110111 RTR --data-- --data-- code (relevant 11 bits) 

'xxxx111x111  x  xxxxxxxx xxxxxxxx 

'received frames are 0EEh, 0FEh, 1EEh, 1FEh, etc 

 

  using "UH<8><8>   0 0 0 4 4" 

  get #CAN, #0, #UFCI_CAN_CODE, 0, ac_code 

  ac_code = byte_mirr ( ac_code, 4 ) 'byte order mirrored for LONG 

  print_using #LCD, "<1>ac_code:";ac_code 

 

  get #CAN, #0, #UFCI_CAN_MASK, 0, ac_mask 'and read 

  ac_mask = byte_mirr ( ac_mask, 4 ) 'byte order mirrored for LONG 

  print_using #LCD, "ac_mask:";ac_mask 

 

  run_task generate_frames              'generates incrementing IDs 

 

'display now IDs of received frames 

  for ever = 0 to 0 step 0               'endless loop 

    get #CAN, #0, #UFCI_IBU_FILL, 0, ibu_fill 

 

    if ibu_fill > 2 then          'if at least one message 

      get #CAN, #0, 1, frameformat 'get frame info byte 

      msg_len = frameformat bitand 1111b 'length 



 

85 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

      if frameformat bitand 80h = 0 then 'if standard frame 

        get #CAN, #0, CAN_ID11_LEN, r_id 'get ID bytes 

        r_id = byte_mirr ( r_id, 2 ) 

        disable_tsw 

        using "UH<4><4>   0 0 0 0 4" 

      else                              'else it is extended frame 

        get #CAN, #0, CAN_ID29_LEN, r_id'and no SLIO message 

        r_id = byte_mirr ( r_id, 4 ) 

        disable_tsw 

        using "UH<8><8>   0 0 0 4 4" 

      endif 

      print_using #LCD, "<1Bh>A<0><2><0F0h>ID rcvd:";r_id; 

      enable_tsw 

 

      if msg_len > 0 then               'if contains data 

        get #CAN, #0, msg_len, data$    'get them out of the buffer 

      endif 

    endif 

 

' HEX format for one byte 

 

  next 

END 

 

 

'----------------------------------------------------------------- 

'generates standard frames with incrementing ID 

'----------------------------------------------------------------- 

TASK generate_frames 

  BYTE ever                       'for endless loop 

  WORD obu_free                   'output buffer free space 

  LONG t_id                       'Tx ID 

  STRING msg$(13) 

 

  t_id  = 0                       'standard identifier 

  for ever = 0 to 0 step 0        'endless loop 

    get #CAN, #0, #UFCI_OBU_FREE, 0, obu_free 

    if obu_free > 13 then 

'frame info 0 = standard, 2 ID bytes, no data 

      msg$ = "<0><0><0>" 

      msg$ = ntos$ ( msg$, 1, -2, t_id ) 'insert ID high byte 1st 

      put #CAN, #0, msg$          'send a standard frame message 

      disable_tsw 

      using "UH<4><4>   0 0 0 0 4" 'to display ID 

      print_using #LCD, "<1Bh>A<0><3><0F0h>ID sent:";t_id; 

      enable_tsw 

                                  'this counts up t_id by 1 

                                  'when considering the shift by 5 

                                  'of the extended ID 

      t_id = t_id + 100000b       'next ID 

      t_id = t_id bitand 0FFFFh   'remain with standard fraem ID 

    endif 

    wait_duration 30 

  next 

END 



 

86 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Extended Frame with Single-Filter configuration 

With an Extended-Frame all ID-bits are passed through the filter. The 3 lowest 
bits should be masked 'don’t care’ for reasons of compatibility. 

 

 R
T

R
 

 ID
0
 

 ID
1
 

 ID
2
 

 ID
3
 

 ID
4
 

 ID
5
 

 ID
6
 

 ID
7
 

 ID
8
 

 ID
9
 

 ID
1
0
 

 ID
1
1
 

 ID
1
2
 

 ID
1
3
 

 ID
1
4
 

 ID
1
5
 

 ID
1
6
 

 ID
1
7
 

 ID
1
8
 

 ID
1
9
 

 ID
2
0
 

 ID
2
1
 

 ID
2
2
 

 ID
2
3
 

 ID
2
4
 

 ID
2
5
 

 ID
2
6
 

Code Byte 3  LSB 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

MSB  Code Byte 0 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

Code Byte 1 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

Code Byte 2 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

unuse
d Mask Byte 3  LSB 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

MSB  Mask Byte 0 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

Mask Byte 1 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

Mask Byte 2 

 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 

unuse
d 



 

87 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Program example: 

 

'----------------------------------------------------------------- 

'Name: CAN_Filter_ES.TIG 

'single filter configuration 

'sends extended frames with different IDs for filter test 

'receives filtered CAN messages and displays on LCD 

'knows standard and extended frame 

'connect a second CAN-Tiger with the same program 

'----------------------------------------------------------------- 

user var strict                   'check var declarations 

#INCLUDE UFUNC3.INC               'User Function Codes 

#INCLUDE DEFINE_A.INC             'general symbol definitions 

#INCLUDE CAN.INC                  'CAN definitions 

 

BYTE frameformat, msg_len, can_stat 

LONG ac_code, ac_mask 

LONG r_id 

STRING id$(4), msg$(13), data$(8) 

 

'----------------------------------------------------------------- 

TASK MAIN 

  BYTE ever                       'for endless loop 

  WORD ibu_fill                   'input buffer fill level 

 

  install_device #LCD, "LCD1.TDD" 'install LCD-driver 

  install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver 

    "6D 55 D9 98 &                'access code 

     EF FF FE FF &                'access mask 

     10 45 &                      'bustim1, bustim2 

     08 1A"%                      'single filter mode, outctrl 

 

  using "UH<8><8>   0 0 0 4 4"    'to display ID in whole program 

 

  get #CAN, #0, #UFCI_CAN_CODE, 4, id$ 'test: read access code 

  'check byte order with View - Watches 

  get #CAN, #0, #UFCI_CAN_CODE, 0, ac_code 

  ac_code = byte_mirr ( ac_code, 4 ) 'byte order mirrored for LONG 

  print_using #LCD, "<1>ac_code:";ac_code 

  wait_duration 2000 

 

'code and mask will be set for extended frames like this now: 

 

'87654321 09876543 21098765 43210Rxx RTR, 2x don't care 

'01101101 01010101 11011001 10011000 code (29 relevant bits+RTR) 

'11101111 11111111 11111110 11111111 mask (0-bits are relevant) 

'RTR and not used bits don't care 

'thus messages with the following bit pattern will pass: 

'xxx0xxxx xxxxxxxx xxxxxxx1 xxxxxxxx 

'bit 5 must be set and bit 25 must be 0 

 

 

  ac_code = byte_mirr ( (0DAABB33h shl 3), 4 ) '         new access code 

  put #CAN, #0, #UFCO_CAN_CODE, ac_code 'and set 

'this is the same: 

' id$ = "FD 55 D9 98"%                 ' new access code 

' put #CAN, #0, #UFCO_CAN_CODE, id$    ' and set 

 



 

88 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

'check again byte order with View - Watches 

  get #CAN, #0, #UFCI_CAN_CODE, 4, id$ 'read access code into string 

'or read like this, but must mirror for LONG 

  get #CAN, #0, #UFCI_CAN_CODE, 0, ac_code 'and read into a LONG 

  ac_code = byte_mirr ( ac_code, 4 ) 

  print_using #LCD, "<1>ac_code:";ac_code 

  wait_duration 1000 

 

  ac_mask = byte_mirr ( 0EFFFFEFFh, 4 ) 'access mask 

  put #CAN, #0, #UFCO_CAN_MASK, ac_mask 'set 

  get #CAN, #0, #UFCI_CAN_MASK, 0, ac_mask 'and read 

  ac_mask = byte_mirr ( ac_mask, 4 ) 'byte order mirrored for LONG 

  print_using #LCD, "ac_mask:";ac_mask 

 

  run_task generate_frames              'generates incrementing IDs 

 

'display now IDs of received frames 

  for ever = 0 to 0 step 0               'endless loop 

    get #CAN, #0, #UFCI_IBU_FILL, 0, ibu_fill 

 

    if ibu_fill > 2 then          'if at least one message 

      get #CAN, #0, 1, frameformat 'get frame info byte 

      msg_len = frameformat bitand 1111b 'length 

      if frameformat bitand 80h = 0 then 'if standard frame 

        get #CAN, #0, CAN_ID11_LEN, r_id 'get ID bytes 

        r_id = byte_mirr ( r_id, 2 ) 

        r_id = r_id shr 5 

      else                              'else it is extended frame 

        get #CAN, #0, CAN_ID29_LEN, r_id'and no SLIO message 

        r_id = byte_mirr ( r_id, 4 ) 

        r_id = r_id shr 3 

        if msg_len > 0 then             'if contains data 

          get #CAN, #0, msg_len, data$  'get them and free the buffer 

        endif 

      endif 

      disable_tsw 

      using "UH<8><8>   0 0 0 4 4"    ' display ID 

      print_using #LCD, "<1Bh>A<0><2><0F0h>ID rcvd:";r_id; 

      enable_tsw 

 

      if msg_len > 0 then               'if contains data 

        get #CAN, #0, msg_len, data$    'get them out of the buffer 

      endif 

    endif 

 

' HEX format for one byte 

 

  next 

END 

 

 

'----------------------------------------------------------------- 

'generates extended frames with incrementing ID 

'----------------------------------------------------------------- 

TASK generate_frames 

  BYTE ever 

  WORD obu_free 

  LONG t_id 

  STRING msg$(13) 



 

89 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

 

  using "UH<8><8>   0 0 0 4 4"    'to display ID in whole program 

  t_id  = 0AABB00h shl 3          'extended identifier 

  for ever = 0 to 0 step 0        'endless loop 

    get #CAN, #0, #UFCI_OBU_FREE, 0, obu_free 

    if obu_free > 13 then 

'frame info 80h = extended, 4 ID bytes, no data 

      msg$ = "<80h><0><0><0><0>" 

      msg$ = ntos$ ( msg$, 1, -4, t_id ) 'insert ID high byte 1st 

      put #CAN, #0, msg$          'send a standard frame message 

      print_using #LCD, "<1Bh>A<0><3><0F0h>ID sent:";t_id shr 3; 

                                 'this counts by 1 in bytes 0 and 3 

                                 'when considering the shift by 3 

                                 'of the extended ID 

      t_id = t_id + 08000008h    'next ID 

    endif 

    wait_duration 50 

  next 

END 

 

 
 



 

90 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Setting of more access codes in standard format 

Secondary addresses 3…15 can be used for additional access codes. If the AME Bit is 
set, the global acceptance filter is used for filtering, otherwise no filter is used. 

Secondary address 16 can be used for one more additional access code. If The AME 
Bit is set, the local acceptance filter is used for filtering, otherwise no filter is used.  

Sec.-Adr. Function 

3 Sets one more access code (global mask) 

4 Sets one more access code (global mask) 

5 Sets one more access code (global mask) 

6 Sets one more access code (global mask) 

7 Sets one more access code (global mask) 

8 Sets one more access code (global mask) 

9 Sets one more access code (global mask) 

10 Sets one more access code (global mask) 

11 Sets one more access code (global mask) 

12 Sets one more access code (global mask) 

13 Sets one more access code (global mask) 

14 Sets one more access code (global mask) 

15 Sets one more access code (global mask) 

16 Sets one more access code (local mask) 

 

PUT #CAN, #CH, “<ID0><ID1><ID2><ID3>” 

<CH> contains the channel number 3…16. 

<ID0> contains the identifiers 3…10. 

<ID1> contains the identifiers 0…2. 

<ID2> is zero. 

<ID3> contains acceptance mask enable bit and identifier extension 
bit. 

  slCode$ = "10 00 00 00"%  ' only ID = 80H 

  PUT #CAN, #3, slCode$   ' set code (without any mask) 

 



 

91 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

 

 
 



 

92 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Setting of the local acceptance mask in standard format 

 
The local acceptance mask is used only for access code 16. Channel-16 is a special 
access code with its own local acceptance mask. If no other code matches, the 
incoming CAN message is compared with channel 16 Code and the local acceptance 
mask (NOT the global acceptance mask)! 

 
PUT #CAN, #0, #UFCO_CAN_LAM, “<M0><M1><M2><M3>” 

<M0> contains the mask bits for identifiers 3…10. 

<M1> contains the mask bits for identifiers 0…2. 

<M2> dummy data (zero). 

<M3> dummy data (zero). 

 

  slCode$ = "FF FF C0 00"%   ' set mask 

  PUT #CAN, #0, #UFCO_CAN_LAM, slCode$  ' set local acceptance mask 

   

  slCode$ = "00 00 3F FE"%   ' all IDs = xxxx7FFH 

  PUT #CAN, #16, slCode$   ' set code (with local mask) 



 

93 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

 

 
 



 

94 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Setting of more access codes in extended format 

 
Secondary addresses 3…15 can be used for additional access codes. If the AME Bit is 
set, the global acceptance filter is used for filtering, otherwise no filter is used. 

Secondary address 16 can be used for one more additional access code. If The AME 
Bit is set, the local acceptance filter is used for filtering, otherwise no filter is used.  

Sec.-Adr. Function 

3 Sets one more access code (global mask) 

4 Sets one more access code (global mask) 

5 Sets one more access code (global mask) 

6 Sets one more access code (global mask) 

7 Sets one more access code (global mask) 

8 Sets one more access code (global mask) 

9 Sets one more access code (global mask) 

10 Sets one more access code (global mask) 

11 Sets one more access code (global mask) 

12 Sets one more access code (global mask) 

13 Sets one more access code (global mask) 

14 Sets one more access code (global mask) 

15 Sets one more access code (global mask) 

16 Sets one more access code (local mask) 

 

PUT #CAN, #CH, “<ID0><ID1><ID2><ID3>” 

<CH> contains the channel number 3…16. 

<ID0> contains the identifiers 21…28. 

<ID1> contains the identifiers 13…20. 

<ID2> contains the identifiers 5…12. 

<ID3> contains the identifiers 0…4, the acceptance mask enable bit 
and identifier extension bit. 



 

95 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

  slCode$ = "00 00 00 0C"% ' only ID = 1H (extended format) 

  PUT #CAN, #3, slCode$  ' set code (without any mask) 

   

  slCode$ = "00 00 3F FE"% ' all IDs = xxxx7FFH (extended format) 

  PUT #CAN, #4, slCode$  ' set code (with global mask) 



 

96 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

 

 
 



 

97 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Setting of the local acceptance mask in extended format 

 
The local acceptance mask is used only for access code 16. Channel-16 is a special 
access code with its own local acceptance mask. If no other code matches, the 
incoming CAN message is compared with channel 16 Code and the local acceptance 
mask (NOT the global acceptance mask)! 

 
PUT #CAN, #0, #UFCO_CAN_LAM, “<M0><M1><M2><M3>” 

<M0> contains the mask bits for identifiers 21…28. 

<M1> contains the mask bits for identifiers 13…20. 

<M2> contains the mask bits for identifiers 5…12. 

<M3> contains the mask bits for identifiers 0…4. 



 

98 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

 

 
 



 

99 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Sending CAN messages 

The CAN device driver supports the following methods of dispatch: 

Send single messages which contain 0...8 characters and whose Identifiers can 
be specified individually as required. Every CAN message is output with a PUT or Print 
instruction. With the Print instruction you must remember that the version will be 
formatted and any additional bytes (CR, LF) appended. 

Send data, which may also contain more the 8 characters. The device driver 
creates as many CAN data packets from this are needed to dispatch the complete 
amount and uses the Identifier specified at the start of the string. The data are 
transferred to the buffer with a single PUT or PRINT instruction. 

Reply to a 'Remote Transmission Request’ by providing a message especially for 
this purpose in the device driver. The message provided will be automatically sent by 
the driver if an RTR-Message is received. 

The CAN device driver expect a CAN message in the predefined format as an 
argument. The first byte will be interpreted as a Frame-Format byte . The next 2 or 
4 bytes are the message's Identifier depending on the Frame-format. A typical CAN 
output as a Standard Frame looks as follows: 

PUT #CAN, #0, “<Frame-Format><ID1><ID2>data” 

<Frame-Format> contains information that this is a Standard-Frame. 

<ID1> contains the upper bits 3...10 of the Identifier. 

<ID2> contains the lower bits 0...2 of the Identifier at the bit positions 
5, 6 and 7. The remaining bits in this byte are insignificant. 

data are data bytes which are transferred in the message. 
0...8 data bytes are possible. 

With 0...8 data bytes this generates a CAN message. If more than 8 data bytes 
are contained the device driver packs the data into several CAN messages and uses 
the same Identifier. 

PUT #CAN, #0, “<Frame-Format><ID1><ID2>abcdefghijklmnopqrs” 

becomes the following CAN messages: 

“<Frame-Format><ID1><ID2>abcdefgh” 

“<Frame-Format><ID1><ID2>ijklmnop” 

“<Frame-Format><ID1><ID2>qrs” 

 



 

100 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

If the data are sent via the secondary address 1 the RTR-bit will be set in the 
message and thus a 'Remote Transmission Request’ produced. 

A single message with a maximum of 8 data bytes at the secondary address 2 
leaves a response which will be sent when the device driver itself receives a 'Remote 
transmission Request’. 

Sec.-Adr. Function 

0 Normal data dispatch 

1 Data dispatch with 'Remote transmission Request' 

2 Deposit a response message which will be sent when the device 
driver itself receives a 'Remote Transmission Request’. 

 



 

101 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

The following program shows a simple send example for standard frame CAN-
messages. 

 

Program example: 

 

'----------------------------------------------------------------- 

'Name: CAN_TX_STANDARD.TIG 

'sends 'the quick brown fox' via CAN in standard frames 

'connect a receiving CAN device, e.g. a Tiger with CAN_RX.TIG 

'----------------------------------------------------------------- 

user var strict                   'check var declarations 

#INCLUDE UFUNC3.INC               'User Function Codes 

#INCLUDE DEFINE_A.INC             'general symbol definitions 

#INCLUDE CAN.INC                  'CAN definitions 

 

'----------------------------------------------------------------- 

TASK MAIN 

  BYTE ever, i_msg, can_stat 

  WORD obu_free                   'output buffer space 

  WORD t_id                       'transmit ID 

  STRING data$, msg$(11) 

 

  install_device #LCD, "LCD1.TDD" 'install LCD-driver 

  install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver 

    "50 A0 00 00 &                'access code 

     FF FF FF FF &                'access mask 

     10 45 &                      'bustim1, bustim2 

     08 1A"%                      'single filter mode, outctrl 

 

  data$ = "the quick brown fox jumps over the lazy dog" 

  i_msg = 0                       'index for running text 

  t_id  = 155h shl 5              'standard identifier 

 

  for ever = 0 to 0 step 0        'endless loop 

    get #CAN, #0, #UFCI_OBU_FREE, 0, obu_free 

    print #LCD, "<1Bh>A<0><1><0F0h>OBU_FREE:";obu_free;"    "; 

    if obu_free > 11 then 

      msg$ = &  'frame info 0 = standard, 2 ID bytes, data 

      "<0><0><0>" + mid$ ( data$, i_msg, 8 )'nfo, ID 

      msg$ = ntos$ ( msg$, 1, -2, t_id ) 'insert ID high byte 1st 

      print #CAN, #0, msg$;       'send a standard frame message 

      i_msg = i_msg + 1           'advance string index 

      if i_msg > len(data$)-8 then 'check limit 

        i_msg = 0 

      endif 

    endif                         'check CAN state 

    get #CAN, #0, #UFCI_CAN_STAT, 0, can_stat 

    using "UH<2><2>   0 0 0 0 2"  'HEX format for a byte 

    print_using #LCD, "<1Bh>A<0><0><0F0h>CAN-State:";can_stat; 

    wait_duration 200 

  next 

END 

 



 

102 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

The following program shows a simple send example for extended frame CAN-
messages. 

Program example: 

 

'----------------------------------------------------------------- 

'Name: CAN_TXEXTENDED.TIG 

'sends 'the quick brown fox' via CAN in extended frames 

'connect a receiving CAN device, e.g. a CAN-Tiger 

'----------------------------------------------------------------- 

user var strict                   'check var declarations 

#INCLUDE UFUNC3.INC               'User Function Codes 

#INCLUDE DEFINE_A.INC             'general symbol definitions 

#INCLUDE CAN.INC                  'CAN definitions 

 

'----------------------------------------------------------------- 

TASK MAIN 

  BYTE ever, i_msg, can_stat 

  WORD obu_free                   'output buffer space 

  LONG t_id                       'extended ID 4 bytes 

  STRING data$, msg$(13) 

 

  install_device #LCD, "LCD1.TDD" 'install LCD-driver 

  install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver 

    "50 A0 00 00 &                'access code 

     FF FF FF FF &                'access mask 

     10 45 &                      'bustim1, bustim2 

     08 1A"%                      'single filter mode, outctrl 

 

  data$ = "the quick brown fox jumps over the lazy dog" 

  i_msg = 0                       'index for running text 

  t_id = 01733F055h shl 3         'extended identifier 

 

  for ever = 0 to 0 step 0        'endless loop 

    get #CAN, #0, #UFCI_OBU_FREE, 0, obu_free 

    print #LCD, "<1Bh>A<0><1><0F0h>OBU_FREE:";obu_free;"    "; 

    if obu_free > 13 then 

      msg$ = &  'frame info 80h = exetended, 4 ID bytes, data 

      "<80h><0><0><0><0>" + mid$ ( data$, i_msg, 8 ) 

      msg$ = ntos$ ( msg$, 1, -4, t_id ) 'insert ID high byte 1st 

      print #CAN, #0, msg$;       'send an extended frame message 

      i_msg = i_msg + 1           'advance string index 

      if i_msg > len(data$)-8 then ' check limit 

        i_msg = 0 

      endif 

    endif                         'check CAN state 

    get #CAN, #0, #UFCI_CAN_STAT, 0, can_stat 

    using "UH<2><2>   0 0 0 0 2"  'HEX format for a byte 

    print_using #LCD, "<1Bh>A<0><0><0F0h>CAN-State:";can_stat; 

    wait_duration 200 

  next 

END 

 
 



 

103 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Receive CAN messages 

The CAN device driver receives CAN messages and put these in the receive 
buffer. Reading out the receive buffer with the CAN device driver is a special process 
and differs from reading out other buffers (e.g. of the serial or parallel driver), since 
here the messages in the buffer can contain further information in addition to the 
data. The messages will always be read completely and processed according to the 
message type: 

Two read modes read differently from the secondary addresses 0 and 1: 

Sec.Adr.  

0 The bytes in the CAN message will be read as they are in the buffer, 
including Frame-Format and ID-bytes. 

1 Only data bytes will be read. Frame-Format and ID-bytes will be 
ignored. The length information of partially read CAN messages will 
be automatically corrected in the buffer . 

 

Caution: the CAN-message must be read completely from the secondary 
address 0 since otherwise the next read operation will not start with the Frame-Info 
byte of the next CAN message. 

Single messages containing 0...8 characters and whose frame format ID and 
Identifier precede the data bytes are read out via the secondary address 0. The 
Frame-Info byte will at first be read to determine whether this is a 'Standard-Frame’ or 
an 'extended Frame’ and how many data bytes are contained therein. The ID-bytes 
which indicate the application-specific type of message will then be read. The data 
bytes will then be read in. 

The example program CAN_RX1.TIG reads the received messages from the 
buffer, distinguishes thereby between standard frames and extended frames and 
shows these in a hexadecimal form.  

 



 

104 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Program example: 

user_var_strict 

 

#INCLUDE UFUNC3.INC               ' User Function Codes 

#INCLUDE DEFINE_A.INC             ' allg. Symbol-Definitionen 

#INCLUDE CAN.INC                  ' CAN-Definitionen 

 

task main 

  BYTE frameformat, msg_len 

  WORD ibu_fill 

  LONG ac_code, ac_mask, r_id 

  string slCode$(4), data$(8)   

 

  INSTALL DEVICE #SER, "SER1B_K4.TD2", & 

  BD_38_400,DP_8N,NEIN,BD_38_400,DP_8N,NEIN 

 

  install_device #CAN, "CAN1_K8.TD2", & ' install CAN-driver 

    "00 00 00 00 &                ' access code 

     FF FF FF FF &                ' access mask 

     01 5C &                      ' bustim1, bustim2 

     00 1A"%                      ' dual filter mode, outctrl 

 

  Print #SER,#0, "Can Receive All!" 

 

  while 1 = 1 

    get #CAN, #0, #UFCI_IBU_FILL, 0, ibu_fill 

    if ibu_fill > 2 then            ' if there is a message 

      get #CAN, #0, 1, frameformat   ' get Frame-Info-Byte 

      msg_len = frameformat bitand 1111b  ' length 

      if frameformat bitand 80h = 0 then  ' if Standard-Frame 

        get #CAN, #0, CAN_ID11_LEN, r_id  ' get ID-Bytes 

        r_id = byte_mirr ( r_id, 2 )  ' 

        r_id = r_id SHR 5   ' 

        using "UH<8><3>   0 0 0 0 3"     ' fuer ID Anzeige         

      else                               ' it is extended frame 

        get #CAN, #0, CAN_ID29_LEN, r_id '  

        r_id = byte_mirr ( r_id, 4 )  ' 

        r_id = r_id SHR 3   ' 

        using "UH<8><8>   0 0 0 4 4"     ' fuer ID Anzeige         

      endif 

      print_using #SER, #0, "ID:"; r_id; ", ";  ' show ID 

      using "UH<1><1>   0 0 0 0 1"       ' zeige Laenge an 

      print_using #SER, #0, "DLC:";msg_len ; ", "; 

 

      if msg_len > 0 then                ' if there are data bytes 

        get #CAN, #0, msg_len, data$     ' read out data 

      endif 

      if bit(frameformat, 6) = 1 then  ' RTR Message? 

         data$ = "" 

         print #SER, #0, "RTR Message";  

      endif 

      print #SER, #0, data$ 

    endif 

  endwhile 

end 



 

105 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Data is read out via the secondary address 1 irrespective of the Frame-Format 
and Identifier bytes. The device driver only reads the data bytes and ignores the 
Identifier. Incompletely read CAN messages keep their frame format and ID byte, the 
length is corrected accordingly by the driver so that the next read operation again 
finds an intact CAN-message in the buffer. 

Program example: 

 

'----------------------------------------------------------------- 

'Name: CAN_RX2.TIG 

'receives CAN data and displays them, ignores IDs 

'displays data as text (send ASCII only) 

'displays also status 

'connect a sending CAN device, e.g. a Tiger with CAN_TXS.TIG 

'----------------------------------------------------------------- 

user var strict                   'check var declarations 

#INCLUDE UFUNC3.INC               'User Function Codes 

#INCLUDE DEFINE_A.INC             'general symbol definitions 

#INCLUDE CAN.INC                  'CAN definitions 

 

'----------------------------------------------------------------- 

TASK MAIN 

  BYTE ever, frameformat, msg_len, can_stat 

  WORD ibu_fill                   'output buffer fill level 

  LONG r_id 

  STRING id$(4), data$, line$ 

 

  install_device #LCD, "LCD1.TDD" 'install LCD-driver 

  install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver 

    "50 A0 00 00 &                'access code 

     FF FF FF FF &                'access mask 

     10 45 &                      'bustim1, bustim2 

     08 1A"%                      'single filter mode, outctrl 

 

  print #LCD, "<1Bh>A<0><0><0F0h>STAT LEN ID"; 

 

  line$ = "" 

  for ever = 0 to 0 step 0        'endless loop 

    get #CAN, #0, #UFCI_IBU_FILL, 0, ibu_fill 

    print #LCD, "<1Bh>A<0><3><0F0h>IBU_FILL:";ibu_fill;"    "; 

    get #CAN, #1, 0, data$ 

    if data$ <> "" then 

      line$ = line$ + data$ 

      if len(line$) > 20 then     'if longer than LCD line 

        line$ = right$ ( line$, 20 ) 

      endif 

      print #LCD, "<1Bh>A<0><2><0F0h>";line$; 

    endif 

    get #CAN, #0, #UFCI_CAN_STAT, 0, can_stat 

    using "UH<2><2>   0 0 0 0 2"  'HEX format for a byte 

    print_using #LCD, "<1Bh>A<1><1><0F0h>";can_stat; 

  next 

END 

 

 



 

106 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Receipt of a 'Remote Transmission Request’ leads to a message which has been 
especially provided for this purpose in the device driver being sent. The received CAN 
message would otherwise be treated as a CAN message without Remote 
Transmission Request’. 

Program example: 

 

'----------------------------------------------------------------- 

'Name: CAN_RTR.TIG 

'prepares a RTR-message and sends then 2 different messages 

'in a loop. 

'RTR message and loop message have different IDs 

'connect a CAN device which uses a RTR message to get the 

'response, e.g. a CAN Tiger with CAN_RTRS.TIG 

'----------------------------------------------------------------- 

user var strict                   'check var declarations 

#INCLUDE UFUNC3.INC               'User Function Codes 

#INCLUDE DEFINE_A.INC             'general symbol definitions 

#INCLUDE CAN.INC                  'CAN definitions 

 

'----------------------------------------------------------------- 

TASK MAIN 

  BYTE ever                       'endless loop 

  STRING rtr_msg$(13) 

 

  install_device #LCD, "LCD1.TDD" 'install LCD-driver 

  install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver 

    "50 A0 00 00 &                'access code 

     FF FF FF FF &                'access mask 

     10 45 &                      'bustim1, bustim2 

     08 1A"%                      'single filter mode, outctrl 

 

  rtr_msg$ = "<0><0FFh><0E0h>RTR-resp"'RTR response string as standard frame 

  put #CAN, #2, rtr_msg$          'prepare device driver 

  print #LCD, "RTR-message prepared" 

                                  'now do something else 

  for ever = 0 to 0 step 0        'endless loop 

    wait_duration 3000 

    put #CAN, #0, "<0><0FFh><0C0h>abcdefgh" 

    wait_duration 3000 

    put #CAN, #0, "<0><0FFh><080h>ijklmnop" 

  next 

END 

 
 



 

107 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

CAN RTR messages 

'Remote Transmission Request’ messages are sent with secondary address 1. A 
RTR message never contains data bytes. In some cases the data length (DLC) contains 
the number of bytes that are required from the data frame. In this case you have to 
add dummy data to your message. The length of the dummy data specifies the data 
length (DLC) bits. Every CAN message is output with a PUT or Print instruction. With 
the Print instruction you must remember that the version will be formatted and any 
additional bytes (CR, LF) appended. 

Receiving a 'Remote Transmission Request’ messages is the same as receiving 
all other CAN messages. If the RTR bit is set and DLC is greater than 0, you have to get 
the data from the CAN Buffer. These data bytes are dummies, ignore them. After 
getting the dummy bytes, you can continue getting the next CAN message. 

The CAN device driver expect a CAN message in the predefined format as an 
argument. The first byte will be interpreted as a Frame-Format byte . The next 2 or 
4 bytes are the message's Identifier depending on the Frame-format. A typical CAN 
output as a Standard Frame looks as follows: 

PUT #CAN, #1, “<Frame-Format><ID1><ID2>data” 

<Frame-Format> contains information that this is a Standard-Frame. 

<ID1> contains the upper bits 3...10 of the Identifier. 

<ID2> contains the lower bits 0...2 of the Identifier at the bit positions 
5, 6 and 7. The remaining bits in this byte are insignificant. 

data are dummy data bytes which specifies the DLC length of the RTR 
message. 
0...8 data bytes are possible. 

 
Sending a RTR message with DLC=0 (standard format): 

      msg$ = "<0><0><0>" 

      msg$ = ntos$ ( msg$, 1, -2, t_id ) 

      put #CAN, #1, msg$ 

 
Sending a RTR message with DLC=8 (standard format): 

      msg$ = "<0><0><0>"+"12345678" 

      msg$ = ntos$ ( msg$, 1, -2, t_id ) 

      put #CAN, #1, msg$ 

 



 

108 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Program example receiving: 

user_var_strict 

 

#INCLUDE UFUNC3.INC               ' User Function Codes 

#INCLUDE DEFINE_A.INC             ' allg. Symbol-Definitionen 

#INCLUDE CAN.INC                  ' CAN-Definitionen 

 

task main 

  BYTE frameformat, msg_len 

  WORD ibu_fill 

  LONG ac_code, ac_mask, r_id 

  string slCode$(4), data$(8)   

 

  INSTALL DEVICE #SER, "SER1B_K4.TD2",& 

  BD_38_400,DP_8N,NEIN,BD_38_400,DP_8N,NEIN 

 

  install_device #CAN, "CAN1_K8.TD2", & ' install CAN-driver 

    "00 00 00 00 &                ' access code 

     FF FF FF FF &                ' access mask 

     01 5C &                      ' bustim1, bustim2 

     00 1A"%                      ' dual filter mode, outctrl 

 

  Print #SER,#0, "Can Receive All!" 

 

  while 1 = 1 

    get #CAN, #0, #UFCI_IBU_FILL, 0, ibu_fill 

    if ibu_fill > 2 then            ' if there is a message 

      get #CAN, #0, 1, frameformat   ' get Frame-Info-Byte 

      msg_len = frameformat bitand 1111b  ' length 

      if frameformat bitand 80h = 0 then  ' if Standard-Frame 

        get #CAN, #0, CAN_ID11_LEN, r_id  ' get ID-Bytes 

        r_id = byte_mirr ( r_id, 2 )  ' 

        r_id = r_id SHR 5   ' 

        using "UH<8><3>   0 0 0 0 3"     ' fuer ID Anzeige         

      else                               ' it is extended frame 

        get #CAN, #0, CAN_ID29_LEN, r_id '  

        r_id = byte_mirr ( r_id, 4 )  ' 

        r_id = r_id SHR 3   ' 

        using "UH<8><8>   0 0 0 4 4"     ' fuer ID Anzeige         

      endif 

      print_using #SER, #0, "ID:"; r_id; ", ";  ' show ID 

      using "UH<1><1>   0 0 0 0 1"       ' zeige Laenge an 

      print_using #SER, #0, "DLC:";msg_len ; ", "; 

 

      if msg_len > 0 then                ' if there are data bytes 

        get #CAN, #0, msg_len, data$     ' read out data 

      endif 

      if bit(frameformat, 6) = 1 then  ' RTR Message? 

         data$ = "" 

         print #SER, #0, "RTR Message";  

      endif 

      print #SER, #0, data$ 

    endif 

  endwhile 

end 



 

109 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

I/O buffer 

CAN messages consist of a Frame-Format byte, an Identifier and a maximum of 
8 data bytes. The Identifier occupies 2 bytes in the case of a 'Standard frame'. With 
an 'extended Frame’ the Identifier is 4 bytes long. Every message is stored in the 
buffer together with the Frame-Format byte and the Identifier. If a message no longer 
fits into the buffer the PUT instruction waits during sending until space is again 
available in the buffer. During receipt the message will be rejected and an Overflow 
error registered. 

Number of data 
bytes 

occupied in the buffer  

 Standard Frame extended Frame 

0 3 5 

8 11 13 

 

Note: if a string containing more than 8 data bytes is transferred to the buffer 
with only one single PUT instruction, space will be needed for additional Identifiers 
since the date is split between several CAN messages. 

Both incoming and sent data will be buffered in a buffer. Size, level or remaining 
space of the input and output buffer as well as the driver version can be inquired with 
the User-Function codes. 

During both output and receipt, a buffer will be regarded as being as full as soon 
as less than 13 bytes are free. A CAN message in Extended-Frame format is 13 bytes 
long. This limit applies since half CAN messages cannot be stored. 

User-Function-Codes for inquiries (instruction GET): 

If there is not enough space in the output buffer and you nevertheless wish to 
output the instruction PUT or Print (and thus the complete task) waits until space 
once again becomes free in the buffer. This waiting can be avoided by inquiring the 
free space in the buffer before output. 

Example: only output if still sufficient free space in the output buffer: 

 

GET #CAN, #0, #UFCI_OBU_FREE, 0, wVarFree 

IF wVarFree > (LEN(A$)) THEN 

  PUT #CAN, #0, A$ 

ENDIF 

 



 

110 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Example: check whether there is a message in the input buffer (the shortest 
possible message is 3 bytes long): 

 

GET #CAN, #0, #UFCI_IBU_FILL, 0, wVarFill 

IF wVarFill > 2 THEN 

  ‘ lies die CAN-Nachricht 

ENDIF 

 
 



 

111 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Automatic bit rate detection 

If the driver is installed in the 'Listen-Only' mode it tries to automatically 
recognize the bit rate. In the 'listen-only’ mode the CAN chip itself cannot send 
anything so that the otherwise familiar error telegrams will not be produced as long 
as the bit rate has not been recognized. Which bit rates are actually recognized can 
be set in a table. If no table is transferred during installation an internal table will be 
used. 

The following prerequisites must be met to detect the bit rate: 

 An operative bus with data traffic is assumed, i.e. there must be at least two 
active participants who send something. 

 The table must contain the correct bit rate. 

The bit rate detection starts with the first setting from the table, as a rule the 
highest possible bit rate. No receive error occurs with the next data packet on the 
CAN bus if the bit rate is already correct. If a receive error does however occur, then 
the driver switches to the next bit rate in the table and waits for a new CAN telegram. 
The driver waits in every case until sufficient CAN telegrams have either enabled a 
recognition of the bit rate or the table of possible values has been processed three 
times. If the bit rate wasn't recognized, the CAN device driver will not be installed. If 
CAN telegrams are only sent very rarely over the bus and the correct bit rate is only at 
the end of the table, the detection takes accordingly longer. If the bit rate wasn't 
recognized, the device driver quits the 'listen-only’ mode. 

 

The table contains the settings for the registers 'bustim0’ and 'bustim1’ in the 
CAN chip. 2 bytes will therefore be needed for every setting. The table must contain at 
least 4 bytes otherwise the internal table which contains the following values will be 
used 



 

112 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Program example: 

 

'----------------------------------------------------------------- 

'Name: CAN_ABR.TIG 

'auto bitrate selection from pre-defined table 

'rest similar to CAN_RX1.TIG 

'connect with a CAN bus with sending devices 

'----------------------------------------------------------------- 

user var strict                   'check var declarations 

#INCLUDE UFUNC3.INC               'User Function Codes 

#INCLUDE DEFINE_A.INC             'general symbol definitions 

#INCLUDE CAN.INC                  'CAN definitions 

 

'----------------------------------------------------------------- 

TASK MAIN 

  BYTE ever, frameformat, msg_len, can_stat 

  WORD ibu_fill                   'input buffer fill level 

  LONG r_id                       'received ID 

  STRING msg$(8), data$(8) 

 

  install_device #LCD, "LCD1.TDD" 'install LCD-driver 

  print #LCD, "trying to find <10><13>CAN bitrate.<10><13>Please wait..." 

  install_device #CAN, "CAN1_K1.TDD", & 'install CAN-driver 

    "50 A0 00 00 & 'access code 

     FF FF FF FF & 'access mask 

     00 00 &       'bustim1, bustim2 

     0A 1A &       'single filter + listen only, outctrl 

     00 43 &       '1 Mbit      here on table with bytes 

     00 5C &       '500 kbit     for bustim0 and bustim1 

     01 5C &       '250 kbit            for auto bitrate 

     03 5C &       '125 kbit                   detection 

     04 5C &       '100 kbit 

     09 5C &       ' 50 kbit 

     10 45 &       ' 49 kbit for SLIO: TSYNC + TSEG1 + TSEG2 = 10 

     0F 7F &       ' 25 kbit 

     1F 7F"%       ' 12.5 kbit 

 

  print #LCD, "<1>STAT LEN ID"; 

 

  for ever = 0 to 0 step 0        'endless loop 

    get #CAN, #0, #UFCI_IBU_FILL, 0, ibu_fill 

    print #LCD, "<1Bh>A<0><3><0F0h>IBU_FILL:";ibu_fill;"    "; 

    if ibu_fill > 3 then          'if at least one message 

      get #CAN, #0, 1, frameformat 'which frame format? 

      msg_len = frameformat bitand 1111b 

      if frameformat bitand 80h = 0 then  'if standard frame 

        get #CAN, #0, CAN_ID11_LEN, r_id 'get ID bytes 

        r_id = byte_mirr ( r_id, 2 )     'byte order for Tiger WORD 

        r_id = r_id shr 5                'shift right bound 

        using "UH<8><3>   0 0 0 0 3"     'to display ID 

      else                               'else it is extended frame 

        get #CAN, #0, CAN_ID29_LEN, r_id 'get ID bytes 

        r_id = byte_mirr ( r_id, 4 )     'low byte 1st in LONG 

        r_id = r_id shr 3                'shift right bound 

        using "UH<8><8>   0 0 0 4 4"     'to display ID 

      endif 

      print_using #LCD, "<1Bh>A<9><1><0F0h>";r_id; 

 



 

113 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

      using "UH<1><1>   0 0 0 0 1"       'display length 

      print_using #LCD, "<1Bh>A<6><1><0F0h>";msg_len; 

      if msg_len > 0 then                'if contains data 

        get #CAN, #0, msg_len, data$     'get them and display 

        msg$ = "        "                '8 spaces 

        msg$ = stos$ ( msg$, 0, data$, msg_len )'prepare for LCD field 

        print #LCD, "<1Bh>A<0><2><0F0h>data:";msg$; 

      else 

        print #LCD, ;" RTR      "; 

      endif 

    endif 

 

    get #CAN, #0, #UFCI_CAN_STAT, 0, can_stat 'CAN status 

    using "UH<2><2>   0 0 0 0 2"  'HEX format for one byte 

    print_using #LCD, "<1Bh>A<1><1><0F0h>";can_stat; 

  next 

END 

 
 



 

114 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

A short introduction to CAN 

CAN is an abbreviation for Controllers Area Network. Originally, CAN was 
developed as a communications protocol to exchange information in motor vehicles. 
CAN is now just as common in automation engineering and domestic engineering. 
The basis for the CAN bus is a hardware which makes the connection to the CAN bus 
and takes care of the actual message dispatch and message receipt, similar to a 
UART at the RS 232 interface, though checksums, error control and repetition of the 
messages in the event of errors as well as bus arbitration and bus prioritization. 
There are a number of manufacturers who have implemented the CAN-interface on 
their processor and there are external CAN chips which can be connected to 
processors which do not have a CAN-interface 'on-board’. 

Compact data packets are sent on the CAN bus, referred to in the following as 
CAN messages. A message consists of an Identifier and between 0 and 8 data bytes 
from a user point of view. There are two variants of the bit protocol on the bus, with 
11-Bit-Identifiers  in accordance with CAN 2.0A and with 29-Bit-Identifiers in 
accordance with CAN 2.0B. Both variants exist next to each other, and both have their 
advantages and disadvantages. Modern chips support either CAN2.0B or at least 
accept the existence of 29 bit Identifiers on the (CAN2.0B passive). 

Bus accesses and access priorities are defined by the CAN specification and are 
handled completely by the CAN hardware. The application software places the CAN 
message with a 'label' in the CAN send mail box. The label, or Identifier, is not 
however an address label but an identification of the contents of the CAN message, 
e.g. the temperature information from sensor 'A’, or the adjustment information for 
pressure controller 'X’. Any bus user for whose application the message is important 
will be programmed to accept this message . The sender cannot find out whether any 
other node has accepted the message. 

A receiving filter in the CAN hardware pre-filters the messages according to 
certain criteria so that all messages reach the application. The biggest differences 
between the different implementations of CAN hardware are in the receiving part. 
Both the manner of the filtration and the number of the messages which are saved in 
the receive mail box are very different. An attempt is made to only allow those 
messages through the filter, which are important for the application. 

So-called 'Remote Transmission Requests’ can be sent out on the CAN bus. The 
corresponding bus users are requested to respond with a specific message. Thus, for 
example, the request to report the 'Temperature Boiler 2' can appear on the bus. The 
applications in the single CAN nodes determine whether a response will be made to 
such send requests and the contents of the response. 

The bus accesses take place in a fixed time grid. All bus users synchronize 
themselves with every bus access. The accesses take place at the same time. The idle 
level on the bus is the '1'. This level is not the dominant one.  A '1' can be overwritten 



 

115 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

by a '0', thus the term 'dominant' for the '0'. A bus access starts with a dominant '0'. 
This is followed by the '1' and '0' levels of the Identifier, starting with the highest-
order bit. The lower priority bus users have '1'-bits in the higher-order bit positions 
and can therefore be overwritten by the prioritized bus users with a '0'. As soon as a 
user is unable to place his '1' during a bus access he aborts the bus access to try 
again later. This renewed trial is carried out automatically by the CAN hardware and 
need not be programmed in the application, which knows nothing at all of this. Only 
if a bus access proves impossible after a number of attempts, and the bus therefore 
apparently permanently occupied by dominant users, will the application be able to 
recognize this status by an inquiry to the error registers of the CAN hardware. 

The most concise differences to the majority of other networks and bus systems 
are compared here: 

Most other industrial bus systems CAN bus 

Every user receives an address and 
messages are given a destination 
address, sometimes together with an 
origin address. 

There aren't any addresses. The 
messages are provided with a content 
declaration instead of the address. The 
users have programmable input filters 
which allow certain messages to pass 
through. 

An acknowledgement of receipt is often 
scheduled. The receiver then confirms 
the correct receipt of the transmission. 

At the end of a message package the 
CAN hardware confirms that this has 
been received correctly on the bus 
(Acknowledge). Whether any user has 
in fact accepted the message is 
unknown. 

Rules exist for the bus access so that 
two users never use the bus 
simultaneously. 

Several users can access the bus with 
CAN simultaneously. Prioritized users 
replace the others, who automatically 
access the bus later, during the access. 
The bus access is handled completely 
by the CAN hardware. 

 
 



 

116 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Error situations 

 
In the following, some error situations are listed and it will be shown how these 

can be recognized . 

Error Possible cause 

What is seen on the Scope: a user 
permanently and continually sends on 
the bus although the application only 
wanted to send a single message. 

The sending user, or better: their 
hardware, receives no Acknowledge 
from another bus user. The CAN 
hardware thus sends the message 
again and again. 
Possible reasons: 
Only one active user is on the bus. The 
others are either unavailable, switched 
off or have not been initialized. 
The bit rate of this participant doesn't 
correspond with the bit rate of the 
other bus users. 

Messages which are safely sent don't 
arrive. 

Receive errors occur. Have the error 
register shown to be able to draw 
conclusions on the error. 
If the error registers are all right, it 
could be that the filters don not let the 
Identifier pass. 

When sending, the error register is set 
immediately. 

The bus is possibly permanently 
occupied by a higher prioritized user 
(overload) or the bit rate is wrong. 
Is there another active user? At least 
one bus user must set the ACK bit. 

 
 



 

117 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

References to CAN 

[1] Wolfgang Lawrenz: CAN Controller Area Network, Grundlagen und Praxis. Hüthig 
Verlag, 1994, ISBN 3-7785-2263-9 

[2] Konrad Etschberger: CAN Controller Area Network, Grundlagen, Protokolle, 
Bausteine, Anwendungen. Verlag Hanser, 1994, ISBN 3-446-17596-2 

[3] Bosch CAN Spezifikation Version 2.0 1991 

[4] CiA: CAN in Automation e.V. Users Group, Am Weichselgarten 25, D-91058 
Erlangen, Germany; Tel: +49 9131 601091, Fax: +49 9131 601092 

[5] SJA1000 data book as PDF-file on the Internet:  
http://www-eu3.semiconductors.com/pip/SJA1000 

[6] P82C150 CAN-SLIO data book as PDF-file on the Internet:  
http://www-eu3.semiconductors.com/pip/P82C150 

Extensive additional bibliographical references can be found in the books. 

 
 



 

118 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Output pulse with high resolution 
The device driver ‘PLSOUT1’ is able to generate pulses with a resolution of up to 

0.4 µsec. The area is determined during installation of the driver. However, the area 
can also be altered at a later time through commands to the driver. 

File name: PLSOUT1.TDD 

INSTALL DEVICE #D, "PLSOUT1.TDD", Area 

D is a constant, variable or expression of the data type BYTE, 
WORD, LONG in the range from 0...63 and stands for the device 
number of the driver. 

Area is a parameter to determine the area. 

Area Timers Resolution Time area 

1 2.500.000 kHz 0.400 µsec 0.0004...26.214 sec 

2 625.000 kHz 1.600 µsec 0.0016...104.856 sec 

3 156.250 kHz 6.400 µsec 0.0064...419.424 sec 

 

Secondary address 0 selects the channel 0 of the pulse-out-device driver. The 
possible number of channels depends on the module In BASIC-Tiger® or Tiny-Tiger® 
modules version 1.0xx only this channel is available. The input pin is always Pin L86. 

The device driver PLSOUT1 enables a very fast pulse output up to 1.25 MHz 
hereby uses hardware resources of the BASIC-Tiger® or Tiny-Tiger® module. Since 
other fast drivers may also need these hardware resources, the simultaneous use of a 
number of drivers is excluded. 

Possible uses of the driver PLSOUT1.TDD together with PLSIN1.TDD in BASIC-
Tiger® and Tiny-Tiger® modules 

PLSOUT1 PLSIN1 

Module Version 1.0xx 

1 channel — 

— 1 channel 

 



 

119 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Pulse output: 

PUT #D, #0, cnt, duty, cycle 

D is a constant, variable or expression of the data type BYTE, 
WORD, LONG in the range from 0...63 and stands for the device 
number of the driver. 

cnt is a constant, variable or expression of the data type LONG and 
specifies the number of pulses to be output. 

duty is a constant, variable or expression of the data type WORD in 
the range from 0...65535 and specifies the time in units of the 
set area for which the pulse should be ‘low’. 

cycle is a constant, variable or expression of the data type WORD in 
the range from 0...65535 and specifies the total time of a pulse 
in units of the set area. 

Attention: this device driver needs variables of the above given type: LONG for 
cnt, and WORD for cycle and duty. 

When counting pulses then the current Tiger modules are restricted to the 
following values of CYCLE and DUTY: 
  CYCLE, range-1 min. 32, range-2 min. 8, range-3 min. 3 
  DUTY, range-1 min. 31, range-2 min. 7, range-3 min. 2 
  Smaller values with COUNT <> 0 will cause a runtime error. 

 
 



 

120 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

User-Function-Codes of PLSOUT1.TDD 

User-Function-Codes for input (instruction GET): 

No Symbol 
Prefix: UFCI_ 

Description 

176 UFCI_OPL_STAT read current Count-Down value  
0: last pulse just finishing 
n: n complete pulses follow  
-1: already at a standstill  
7FFFFFFF: endless output 

 

User-Function-Codes for the device drivers PLSOUT1 for output are defined in the 
Include-File ‘UFUNCn.INC’ (instruction PUT): 

No Symbol Description 

144 UFCO_OPL_RNG set area 

145 UFCO_OPL_CNT_ADD add new number of pulses  

146 UFCO_OPL_CNT_SET set new number of pulses 
n: generates n pulses 
0: soft stop 
-1: hard stop  

 

Example: (area: 3) output 10 pulses with the cycle time 32µsec (5*6.4µsec) and 
the Low-Time of 12.8µsec (2* 6.4µsec): 

PUT #10, #0, 10, 2, 5 

 
Example: Set area 2 during the runtime: 

PUT #10,#0, #UFCO_OPL_RNG, 2 

 
Example: read the number of pulses following the pulse which is currently running: 

GET #10,#0, #UFCI_OPL_STAT, 4, CNT 

 



 

121 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Example: with running, possibly infinite pulse output, set the new number of 
pulses to 1. The output can thus be aborted, whereby the scanning rate and the 
frequency are retained, the last pulse is still completely output: 

PUT #10,#0, #UFCO_OPL_CNT_SET, 1 

 
Example: with running, possibly infinite pulse output, set the new number of 

pulses to 0. This is a soft stop. The current pulse will be finished and then the output 
is stopped: 

PUT #10,#0, #UFCO_OPL_CNT_SET, 0 

 
Example: with running, possibly infinite pulse output, set the new number of 

pulses to -1. This is a hard stop. The pulse output is directly stopped and the current 
pulse will not be finished: 

PUT #10,#0, #UFCO_OPL_CNT_SET, -1 

 
 
Program example endless: 

#INCLUDE UFUNC3.INC 

#INCLUDE DEFINE_A.INC              

LONG no_of_pulses                  

WORD cycle, duty                   

 

TASK MAIN 

  install_device #OPL1, "PLSOUT1.TDD", 1  ' Range-1 

 

  no_of_pulses = 0                  ' endless 

  cycle = 3     ' 1,2 ys 

  duty = 1     ' 400 ns 

  put #OPL1, no_of_pulses, duty, cycle   ' start 

 

END 

 



 

122 www.wilke.de   -  02405 / 40855 - 0 
 

Device drivers 
 

Program example soft stop: 

user_var_strict 

#INCLUDE UFUNC3.INC                 ' User Function Codes 

#INCLUDE DEFINE_A.INC               ' Symbol-Definitions 

 

#define UFCO_OPL_CNT_SET 146 

#define UFCO_OPL_CNT_ADD UFCO_OPL_CNT 

 

LONG no_of_pulses                   ' number of pulses 

WORD cycle, duty                    ' PLSO1-Parameter 

 

TASK MAIN 

  BYTE ever                         ' endlessloop 

 

  install_device #LCD, "LCD1.TD2"  ' LCD driver 

  install_device #OPL1, "PLSOUT1.TD2", 3  ' Range 3 

 

  no_of_pulses = 0                 ' endless pulses 

  cycle = 200 

'                   start, min, max, step, ID 

  duty = modulo_updo ( 10,  10, 199,    1,  0 ) 

 

  run_task do_po1                   '  

 

  for ever = 0 to 0 step 0          ' endless loop 

    duty = modulo_updo ( duty, 0 )  ' change duty 

    print #1, "<1BH>A<0><0><F0H>duty:";duty;"    ";  ' show 

    wait_duration 10                ' wait a bit 

  next 

END 

 

TASK do_po1 

  BYTE ever                         ' endlessloop 

  WORD old_duty, old_cycle          ' PLSO1-Parameter 

  LONG rest 

 

  old_duty = duty                   '  

  old_cycle = cycle    ' 

  put #OPL1, no_of_pulses, duty, cycle   ' start puls output 

 

  for ever = 0 to 0 step 0          ' endless loop 

    if (duty <> old_duty) or (cycle <> old_cycle) then ' 

      old_duty = duty               ' if changed 

      old_cycle = cycle             ' store current values 

      rest = 1     ' init 

      wait_duration 100    ' pulse 100ms 

      put #OPL1, #0, #UFCO_OPL_CNT_SET, 0  ' soft stop 

      while rest > 0                ' wait for end of pules 

        get #OPL1, #0, #UFCI_OPL_STAT, 4, rest  ' rest pulses 

      endwhile     '  

      wait_duration 100    ' 100ms pause for scope 

      put #OPL1, no_of_pulses, duty, cycle  ' set new values 

    endif 

  next 

END 



 

123 www.wilke.de   -  02405 / 40855 - 0 
 

Documentation History 
 

Documentation History 
 

Version of 
Documentation 

Description / Changes 

010 - CAN device driver 

011 - CAN RTR messages 

012 - PLSOUT1 

- CAN RTR correction 

013 - XBUS timing 

014 - XBUS timing sample point and delay 

015 - Interrupts  corrected 

016 - RTC: Day of week, Sunday added 

017 - LCD-S1D13700 stop ORing alternative layer 

- RTC: Set Day of Week Tip 

018 - LCD-S1D13700 deleted => LCD-S1D13700_xxx.pdf 

- RTC1: Day of week will be set automatically in numerical 
string. 

019 - CAN: Bitrate example 1MBit Bustiming register changed 
from 43H to 45H 

- CAN: UFCI_CAN_EERR 

- SER1B removed (see SER1B_Updates_xxx.pdf) 

- CAN: UFCI_CAN_ALC, UFCI_CAN_RMC, UFCI_CAN_ECC 
removed (not available with Tiger 2) 

020 - CAN: UFCI_CAN_ALC, UFCI_CAN_ECC removed from 
status register table and ECC chapter removed 
completely (not available in Tiger-2) 

- CAN TXERR and RXERR: In Bus-Error-Passive mode Bit-7 
of the status register will NOT be set. 

021 - CAN: OUTCTRL and UFCO_ERRC_RESET removed 

022 - Analog-2: Setting of Trigger Level  

- Analog-2: Number single channels changed 

023 - Telephone number changed 

 



 

124 www.wilke.de   -  02405 / 40855 - 0 
 

Documentation History 
 

 


	Index
	Installation
	Development environment
	TINY-Tiger 2 module
	Hardware
	Software

	String length
	XBUS Timing
	New functions: Interrupts
	INTTASK
	SET_INT
	CONFIG_TIMER_INT
	ENABLE_INT
	DISABLE_INT
	COUNTS
	DIFF_COUNTS
	SET_COUNTS
	SLEEP

	Further functions:
	SHIFT_OUT

	Device drivers
	ANALOG1.TD2
	A/D inputs with ANALOG2.TD2
	User-function-codes of the ANALOG2.TD2
	Measuring in FIFO
	Measuring in String
	Measurements with 12-bit
	Setting the sample-rate
	Measuring with trigger

	RTC1.TD2
	User-function-codes of the RTC1.TD2
	Setting and reading the time in numerical strings
	Reading the time as a clear text string
	Setting the alarm time with numerical string
	Setting and reading the time in seconds
	Setting the alarm time in seconds

	MF2_xxxx.TD2 – MF-II PC keyboard
	CAN-Bus
	Description of the device driver CAN1_xx.TD2
	CAN messages in the I/O-buffer of the driver
	Standard frame
	Extended Frame
	CAN User-Function-Codes
	Bus-Timing and transfer rate
	Bustiming-Register 0
	Bustiming-Register 1
	Error Register
	Arbitration-Lost error
	RXERR receive error counter
	TXERR send error counter
	Receive filter with Code and Mask
	Set Access-Code and Access-Mask
	Standard-Frame with Single-Filter configuration
	Extended Frame with Single-Filter configuration
	Setting of more access codes in standard format
	Setting of the local acceptance mask in standard format
	Setting of more access codes in extended format
	Setting of the local acceptance mask in extended format
	Sending CAN messages
	Receive CAN messages
	CAN RTR messages
	I/O buffer
	Automatic bit rate detection
	A short introduction to CAN
	Error situations
	References to CAN

	Output pulse with high resolution
	User-Function-Codes of PLSOUT1.TDD


	Documentation History

