Basic Tiger File Systemfor
Smar t Medi a

Version 1.04

TIUEVOAUCTIO N aaueeneeanennoneenennereeneeeereeneeeerreseesersesessessssessessessssessssssssssssessosssssssesssssssessasessssassssssssssssssssnasses 4

BTFS for SmMartMedia Cardceeeinieeiinensennsnensennssenssensssecsessssesssessssessssssssssssassssessasssssssss 4
BTEFS for SmartMedia File LiSt......iiiiiiiniiniiiininiininenisneissnecssnecssssecssssscsssnsssssnsssssasssses 4
FS Include Files (directory “File SYStemM™)......cc.ceecuiiiiiiiieiiiieeiie ettt e e 4
FS Examples (directory “File SYStemM™).......cccoiiiiiiiiiiiiiiiieie et 5
SmartMedia Device Drivers (directory “TB_Drivers” or “Bin”)ccccccccveviiieencieeniiieeeiee e 5
SmartMedia Functions (directory “TB_System Files” or “Bin™)ccccceeieriiiinienciienieeieenen. 5
SmartMedia Low Level Examples (directory “Random ACCESS™) ...ceeevvveerveeeriiieeriieeeiieeeeeenn 5
Supported SmartMedia Card Types and Other LImitationsccocceeveeecsnecssnnecssnnecsseeecsnnees 5
BTFS System Requirements 5
File System API (application program iNLEIfACE).......uueeeesevueeressssvresssssssisssssssssossssssessssssssssssssssssssns 6
File SYStem SEtUP ccccecereerieeiseniieensensinnnsnenssencssesssnncssessssssssesssnssssesssassssssssassssesssssssassssassssesssssssassss 6
Initialising the File System HardWare.............cccooviiiiiiiniiiiiieiecicce e 6
Setting Up the FIle SYSteM......c.uiiiiiiiiiii ettt et e e e enaeeennee s 6
Opening and CloSing FileS....iiiiiiiiniiiisniiiiniiisniinsnicnsnecnsseissssecssssecsssescsssesssssssssssssssssascsses 7
OPENING the FIl...ccuuiiiiiiieeiiiece ettt et e et e e aaeeetaeeesaeeeaaeesnsaeesnneeas 7
CLOSING the FIlEviiiiiiiieie ettt ettt e et e et e et e enseeeaseenseeenns 9
File Input and File OULPULucouiiiiiiiienniniinensninnnecsteissnecsesssseessessssesssnssssssssassssesssssssassssasssses 10
Reading the FAlecocviiiiiiieieee et ettt ettt et et e s e naeeneeas 10
WIHNG the FILe ..ottt e 10
Setting and Getting the File Position of a DeSCriptorccoieiiveercsseeeiseeensnecsseecssneccsssnecnns 11
Getting the File POSITIONiiiiiiiiiie et e et e e e tae e e e e e saaeeenns 11
Setting the File POSIIONcc.eiiiiiiiiieiieie ettt ettt et et e e eee 11
Getting the File SiZeccouiienviiiiiiiiniiinisiiissnicnsninssnnissssnissssnesssssesssssssssnosssssossssssssssssssssssssssssss 12
Creating DireCtOries. ... uiiiciivsericssssariecsssssnresssssssesssssssssssssssssesssess 13
Deleting Files and DIreCtOriesc.cccevveeeesverecssnressssnissssncsssrcsssncsssssossssssssssssssssssssssssssssesssssssssass 13
Setting Current DIFECLOTYiciveecesnecssnccssanessssnssnsssssasssssns 13
FIle AIFIDULES .uueieiniiiiiniiiintiisnticinticinnecsstcssstessssicssssnessssssssssnsssnes 14
Getting the File AttrIDULES.cc.eiiiiiiiiiiiei et 14
Setting the File AtIIDULESooouiiiiieiieciieie ettt ettt et eae e e ebeensaeeasaeseeenne 15
FIle TIIME cccueeiniiiiiiiiiiiiiininninsieinsneissiisessssesssssssessssssssesssssssssssssssssessssssssssssassssessssssssssssassssasssses 16
Time and Date FOTMALcoooiiiiiiiieieceeee ettt e e e e e e eaae e e 16
Getting the FIle TIMEeooiiiiiiiiiiiee ettt 16
Setting the FIle TIME......ccviiiiiiiiiiiiciiecie ettt sae e s eebeessaeenbaessaeenseeenns 16
FINA FIle aucneiiiiiiiiiitiitintiiitinnnnnninieinnisnnississsnsssessssssssessssssssesssssssssssssssssessssssssssssassssasssss 18
Searching for the flle NAMEccooiiiiiiiiiiee e e 19
Getting the information about the storage mediaccovveecivuriniveeicssnnicssnnicssnncsssansssssnssssnsene 20
Getting the information about the file SYStemcuueeveerrierrenssnenienssnensennsnenssenssaessnesssessanessaees 21
Formatting the Storage Medi.........coeiieivricisnicssnisssenissssnsssssnss 23
Synchronizing the File SYStem .. iiieinieisensienninensinssnensenssnesssesssnesssesssssssssssssssssessssssssssssssssns 24
WRAE MUSE BE DORE....cenenneneronenerosaerosraessssanssssassssssssssssssssssssssasssssasssssasssssassssssssssssssssssssssssssssasssssasss 26

| nt roducti on

Basic Tiger File System (BTFS) is a collection of subroutines
witten in the Tiger Basic progranm ng | anguage and i npl enenting
general functionality of FAT file systemfor permanent storage
devi ces. BTFS consists of three hierarchical |ayers: File System
APl , FAT inplenmentation, special hardware support. A device driver
for the particular hardware underlies the BTFS.

BTFS for Snmart Medi a Card

BTFS for Smart Media Card has the followi ng structure:
FS APl <FAT <Snmart Medi a Routines <Smart Media Device Driver.

FS APl is a set of subroutines working with files and directories.
FS APl |ayer is considered to be the nost interesting |ayer for an
application programer and exactly this layer is described nore
detailed in the present docunent.

FAT is an inplenmentation of FAT12/FAT16 file system (with |ong
names support).

Smart Medi a Routines is a set of subroutines witten with regard to
t he specifications of SmartMedia card devi ces.

Smart Medi a Device Driver is a Basic Tiger device driver
i npl ementing elenentary interface between Smart Medi a hardware and
a Tiger Basic application.

BTFS for Smart Media Fil e List

FS Include Files (directory “File_Systent)

fs conf.inc - definitions that can be changed by user

fs coinc.inc - definitions relevant for all FS |ayers;
co-including of all FS conponents. Only this file nust be
explicitly included in the Tiger Basic application using
BTES.

fs_ inx_i.inc - inplenentation of FS APl and sone nmi ntai ni ng
subrouti nes.

fs inx _d.inc - definitions relevant for FS API.

fs fat _i.inc - inplenentation of FAT12/FAT16 with | ongnanes
support.

fs fat _d.inc - definitions useful for FAT12/ FAT16
i npl ement ati on.

fs fnmt _i.inc - inplenmentation of formatting process.

fs dat _i.inc - inplenentation of date and tinme conversions.

fs dat_d.inc - definitions relevant for date and tine
conver si ons.

fs hal _d.inc - definition of Hardware Abstraction Layer;
HAL is used to sinplify the adaptation of the file system
subroutines to the working with other storage devices.

fs snc_i.inc - inplenentation of subroutines working with
Smart Medi a and conform ng to the Smart Medi a
specifications and to the special features of the
Smart Medi a devi ce driver.

4

fs_ snc_d.inc - definitions relevant for SmartMedi a
subrouti nes.

fs ecc_i.inc - inplenmentation of ECC cal cul ation for
Smar t Medi a.

FS Exanpl es (directory “File_Systeni)

dir_create_del.tig, file_open.tig, file_size.tig,
file_pointer.tig, file_ attributes.tig, file_tine.tig,

file format.tig, file sync.tig, file copy.tig, file find.tig,
get _hd_info.tig, get fs info.tig

Smart Medi a Device Drivers (directory “TB Drivers” or “Bin”)

snmedi a_16nb. tdd, snedia 32nb.tdd, snedia 64nb.tdd,

snmedi a_128nb. t dd

Any device driver fits for all SmartMedia cards of the exact
or smaller size.

Smart Medi a Functions (directory “TB System Files” or “Bin”)

Some new built-in functions are extensively used by the BTFS
subroutines. The functions are located in the foll ow ng

encl osed system fil es:

tac0000.tac, tac0000 .tac, tac0100.tac, tac0100 .tac

The encl osed systemfiles require the Tiger Basic conpiler
version 5.01 or higher.

Smart Medi a Low Level Exanples (directory “Random Access”)

snedia test _era w _rd_ser0 _v03.tig,

snmedi a_hex_dunp_to_ser _02.tig

Note: This test nmay destroy very inportant Smart Medi a header
informati on and nake the Snmart Medi a card unusabl e.

Supported Smart Media Card Types and Ot her Limtations

The follow ng Smart Medi a card types are supported by BTFS at
present: 1My, 2Mo, 4Mo, 8N, 16Ny, 32My, 64N, 128Mo.

Most formatting prograns use FAT12/ FAT16 format for the various
types of SmartMedia cards, but can be set to use other fornmats.
You shoul d avoid this as only FAT12/ FAT16 i s supported by BTFS.

Al t hough long file nanes are supported, it’s not possible to
differentiate files with identical first 6 characters.

The BTFS subroutines are not re-entrant. Be careful using the BTFS
subroutines in the different tasks.

BTFS System Requi renents

BTFS requires the Tiger Basic conpiler version 5.01 or higher. The
encl osed systemfiles (extension: TAC) nust be copied to the
“..\Bin” directory of the Tiger Basic software.

File System APl (application program
| nterface)

File System Setup

Initialising the File System Hardware

Subr outi ne:
sub bFil eSyst enHardwarel nit(var byte bpvHdl nit Gk)

The bFil eSyst emHardwar el nit subroutine calls special subroutines
initializing a particular storage nedium (f.e.: SmartMedi a) that
Is to be used by the file system This subroutine retrieves al so
t he paraneters of the storage nedi um

This subroutine returns in bpvHdI nitOk TRUE on successf ul
initializing, and FALSE on error.

Be prepared: This subroutine may take a long tinme when run with
Smar t Medi a.

Exanpl e: al

Setting Up the File System

Subr outi ne:
sub bSet upFi | eSysten(var byte bpvl sFSSet upGk)

The bSet upFil eSystem subroutine initializes internal file system
data, reads the boot sector and retrieves current file system
settings.

This subroutine returns in bpvlsFSSetupCk TRUE on success, and
FALSE on error.

Exanpl e: nearly al

Opening and d osing Files

Qpening the File

Subr out i ne:
sub | OpenFil e(string spFil eNane$; | ong | pFlags; var |ong
| pvHandl e)

The | OpenFil e subroutine creates and returns a new file descriptor
for the file named by spFileNane$. Initially, the file position
indicator for the file is at the beginning of the file.

The | pFl ags argunent controls howthe file is to be opened. This
is a bit mask; you create the value by using bitwise OR on the
appropriate paraneters (using the “bitor’ operator in TB). File
status flags |IpFlags fall into three foll ow ng categori es.

Fil e Access Mdes:

The file access nodes allow a file descriptor to be used for
reading, witing, or both. The access nodes are chosen when the
file is opened, and never change.

O_RDONLY

Open the file for read access.
O WRONLY

Open the file for wite access.
O _RDVR

Open the file for both reading and witing.
O RDONLY and O WRONLY are independent bits that can be bitw se-
ORed together, and it is valid for either bit to be set or clear.
This means that O RDWR is the sane as O RDONLY| O WRONLY. A file
access node of zero is equal in neaning to O RDWR

Open-tine Fl ags:
The open-tinme flags specify options affecting how open Wi ll behave.
These options are not preserved once the file is open.
O CREAT
The file will be created if it doesn't already exist.
O _EXI ST
Check, whether the file exists, don’'t open the file. In the
case of a success the return value is zero, which does not
mean that a file descriptor was assigned to an opened file.

I/ O Operating Mdes:
The operating nodes affect how i nput and out put operations using a
file descriptor work.

O_APPEND
The bit that enabl es append node for the file. If set, then
all “wite operations wite the data at the end of the file,

extending it, regardless of the current file position. This is
the only reliable way to append to a file.

The normal return value | pvHandle from| OpenFile is a non-negative
|l ong integer file descriptor. In the case of an error, a val ue of
{-1} is returned instead.

Example: “file_open.tig”

Closing the File

Subr outi ne:
sub bd oseFil e(_1ong | pHandl e; var byte bpvlsFil ed osed)

The bCl oseFil e subroutine closes the file descriptor |pHandle.
The normal return val ue bpvlsFiled osed from bC oseFile is TRUE
If the file descriptor IpHandle is invalid, the val ue

bpvl sFi |l eCl osed is assigned to FALSE.

Exanple: “file_open.tig”

File Input and File Qutput

Reading the File

Subr out i ne:
sub | ReadFil e(_ 1 ong | pHandl e; var string spvBuffer$:; |ong | pSize;
var | ong | pvNunByt esRead)

The | ReadFil e subroutine reads up to | pSize bytes fromthe file
wi th descriptor |pHandle, storing the results in the spvBuffer$.
(This is not necessarily a character string, and no term nating
nul | character is added.)

The return value | pvNunByt esRead is the nunber of bytes actually
read. This m ght be less than | pSize; for exanple, if there aren't
that many bytes left in the file. Note that reading | ess than

| pSi ze bytes is not an error.

A val ue of zero indicates end-of-file (except if the value of the
| pSi ze argunent is also zero). This is not considered an error. |If
you keep calling | ReadFile while at end-of-file, it will keep
returning zero and doi ng not hing el se.

If |ReadFile returns at | east one character, there is no way you
can tell whether end-of-file was reached. But if you did reach the
end, the next read will return zero.

In case of an error, | ReadFile returns {-1}.

Exanple: “file_open.tig”

Witing the File

Subr outi ne:
sub IWiteFile(long | pHandl e; string spBuffer$;: |ong | pSize; var
| ong | pvNunBytesWitten)

The IWiteFile subroutine wites up to | pSize bytes from spBuffer$
to the file with descriptor |pHandle. The data in spBuffer$ is not
necessarily a character string and a null character is output |ike
any ot her character.

The return value is the nunber of bytes actually witten. This nmay
be | pSize, but can be smaller. Your programshould call IWiteFile
in a loop, iterating until all the data is witten.

In the case of an error, IWiteFile returns {-1}.

Example: “file_open.tig”

10

Setting and Getting the File Position of a Descriptor

The File Position of a Descriptor specifies the position in the
file for the next read or wite operation.

Getting the File Position

Subr outi ne:
sub | GetFil ePointer(long | pHandl e; var |long | pvCurFil ePtr)

The | GetFi |l ePoi nter subroutine is used to read the file position
of the file wth descriptor |pHandle.

The return value | pvCurFilePtr froml GetFilePointer is nornally
the current file position, measured in bytes fromthe begi nning of
the file. If the value of file descriptor is invalid,

| Get Fil ePointer returns a value of {-1}.

Exanple: “file_pointer.tig”

Setting the File Position

Subr out i ne:
sub | SetFil ePointer(|long | pHandle: long | pOfset: byte bpWence;
var |long | pvNewFi |l ePtr)

The | Set Fil ePoi nter subroutine is used to change the file position
of the file with descriptor | pHandle.

The bpWence argunent specifies how the | pOffset should be
interpreted, and it nust be one of the synbolic constants
FILE BEG N, FILE_CURRENT, or FILE_END.
FI LE_ BEG N
Specifies that bpWience is a count of characters fromthe
begi nning of the file. This count nust be positive.
FI LE_CURRENT
Specifies that bpWence is a count of characters fromthe
current file position. This count may be positive or negative.
FI LE_END
Speci fies that bpWence is a count of characters fromthe end
of the file. This count nust be positive.

The return value | pvNewFil ePtr froml SetFilePointer is normally
the resulting file position, nmeasured in bytes fromthe beginning
of the file. You can use this feature together with FI LE CURRENT
to read the current file position, though the using of

| GetFil ePointer is nore efficient.

If the file position cannot be changed, or the operation is in
sonme way invalid, |SetFilePointer returns a value of {-1}.

The position past the current end can not be set, and the file can
not be extended by using of |SetFilePointer.

Exanple: “file_pointer.tig”

11

Getting the File Size

Subr out i ne:
sub | GetFileSize(long | pHandl e; var long | pvFil eSize)

The | GetFil eSize subroutine is used to read the file size of the
file with descriptor | pHandle.

The return value | pvFileSize froml CGetFileSize is normally the
file size, nmeasured in bytes. The subroutine | GetFileSize returns
a value of {-1} on error.

Exanple: “file_size.tig"

12

Creating Directories

Subr out i ne:
sub bCreateDirectory(string spFil eNane$; var byte bpvlsCreated)

The bCreateDirectory subroutine creates a new, enpty directory
with nanme spFil eNane$.

A return val ue bpvlsCreated of TRUE i ndi cates successf ul
conpl etion, and FALSE indicates failure.

Exanple: “dir_create _del.tig

Deleting Files and Directories

Subr out i ne:
sub bDel eteFil e(_string spFil eNane$;: var byte bpvlsDel eted)

The bDel eteFile subroutine deletes the file or the directory
spFi | eNane$.

Aread-only file (i.e. afile with the set “D R ATTR_READONLY”
attribute) cannot be renoved.

A directory nmust be enpty before it can be renoved; in other
words, it can only contain entries for ‘.’ and *'..".

This subroutine returns in bpvlsDel eted TRUE on successf ul
conpl etion, and FALSE on error.

Exanple: “dir_create_del.tig”

Setting Current Directory

Current Directory is a directory to which every not absolute path
is related. A root directory nane consists of one character "\"
("/" is also accepted). An absolute path begins always with the
root directory name. A relative path nust never have the root
directory nane as a very first part of the whole path.

Subr outi ne:
sub bSetCurrentDir(string spNewCurrentDir$;var byte bpvlisDirSet)

The bSetCurrentDir subroutine sets Current Directory to the
spNewCurrent Di r $.

This subroutine returns in bpvlisDrSet TRUE on successful setting,
and FALSE on error.

Exanple: “dir_create_del.tig”

13

File Attri butes

File Attribute is a byte value describing the nost conmon
properties of any particular file systementry (file or
directory). AFile Attribute is a conbination of follow ng
constants:
DI R_ATTR FI LE

The entry is a file.

DI R_ATTR_READONLY
The file or directory is read-only. Applications can read the
file but cannot wite to it or delete it. In the case of a
directory, applications cannot delete it.

DI R_ATTR_SYSTEM
The file or directory is part of, or is used exclusively by,
the operating system

DI R_ATTR_HI DDEN
The file or directory is hidden. It is not included in an
ordinary directory listing.

DI R_ATTR_VOLUME
Vol une | abel attribute nmeans that this entry contains the disk
| abel in the filename and extension fields. Volunme | abel is
valid only in the root directory. Commopbn sense says, there
shoul d be only one vol une | abel per disk. For the entry to
really contain the volune |abel, the attribute should be
exactly DI R_ATTR VOLUME.

DI R_ATTR DI RECTORY
The entry is a directory.

DI R_ATTR_ARCHI VE
The file or directory is an archive file or directory.
Applications use this flag to mark files for backup or
removal .

Getting the File Attributes

Subr out i ne:
sub bGetFileAttributes(string spFil eNane$; var byte bpvFileAttr:;
var byte bpvAttrReadOk)

The bGetFil eAttri butes subroutine reads a File Attri bute val ue of
the file spFileNane$, storing the result in the bpvFileAttr.

This subroutine returns in bpvAttrReadOk TRUE on successf ul
readi ng, and FALSE on error.

Exanple: “file_attributes.tig”

14

Setting the File Attributes

Subr out i ne:
sub bSetFileAttributes(string spFileNane$; byte bpNewFil eAttr;

var byte bpvAttrSet Ok)

The bSetFileAttri butes subroutine wites a new File Attribute
val ue bpNewFil eAttr of the file spFil eNane$.

This subroutine returns in bpvAttrSet Ok TRUE on successful
writing, and FALSE on error.

Exanple: “file_attributes.tig”

15

File Tine

Ti me and Date For mat
The file tinme fields have the follow ng format:

Bits Range [Transl ated Range Val i d Range |[Description
0..4 0..31 |0..62 0..59 Seconds/ 2
5..10 |0..63 |0..63 0..59 M nut es
11..15 |0..31 |0..31 0..23 Hour s

The file date fields have the follow ng format:

Bits Range |Transl ated Range |[Valid Range |Description
0..4 0..31 |0..31 1..28 up to |Day
1..31
5.8 0..15 |0..15 1..12 Mont h
9..15 |0..127 |{1980..2107 1980..2107 |Year, add 1980 to
convert

Getting the File Tine

Subr outi ne:

sub bGetFil eTine(_string spFil eNane$; var word wpovCreat eDat e,
wpvCreat eTi ne, wpvAccessDate, wovWiteDate, wovWiteTine; var byte
bpvl sTi neRead)

The bGetFil eTime subroutine retrieves the date and tine that a
file spFileNanme$ was created, |ast accessed, and |ast nodified.

wpvCr eat eDat e

The date the file was created.
wpvCr eat eTi ne

The tine the file was created.
wpvAccessDat e

The date the file was | ast accessed.
wpvW it eDat e

The date the file was | ast nodified.
wpvW it eTi nme

The tinme the file was | ast nodifi ed.

Al the tine and date fields are represented in the formt
described in the "Time and Date Fornmat".

Exanple: “file_time.tig”

Setting the File Tine

Subr out i ne:

sub bSet Fil eTi ne(_string spFil eNane$; word wpCreat eDat e,
wpCr eat eTi ne, wpAccessDate, woWiteDate, woWiteTine; var byte
bpvl sTi nreWitten)

The bSetFil eTime subroutine sets the date and tine that a file
spFi | eNane$ was created, |ast accessed, and | ast nodified.

16

wpCr eat eDat e

The date the file was created.
wpCr eat eTi e

The tine the file was created.
wpAccessDat e

The date the file was | ast accessed.
wpW i t eDat e

The date the file was | ast nodifi ed.
wpWiteTi ne

The tinme the file was | ast nodifi ed.

Al the tine and date fields are represented in the formt
described in the "Time and Date Fornmat".

Exanmple: “file_tinme.tig”

17

Find File

Two subroutines described below return the result of the searching
in a string used as a nenory bl ock storing the data of different
types and sizes. The particular fields of such a block can be
accessed by neans of the built-in functions (like nfrons, rfrons,
m d$ etc) reading the definite nunber of bytes fromthe specific
offset into a variable. The follow ng of fset and size val ues can
be applied for accessing the information about a found file:

O f set Si ze Descri ption

FFD ATTR OFFS FFD ATTR SI ZE file attribute

FFD_CREATE_TI ME_M5_OFFS|FFD_CREATE TI ME_MS_SI ZE|ns part of file
creating tine

FFD CREATE TIME OFFS |FFD CREATE TIME SIZE |file creating time

FFD CREATE DATE OFFS |FFD CREATE DATE SIZE |file creating date

FFD_ACCESS DATE_OFFS FFD_ACCESS DATE_SI ZE date of the [ast
file access

FFD SI ZE OFFS FFD SI ZE SI ZE file size
FFD_NAME_OFFS FFD_NAME_SI ZE file name (max. 8
synbol s)
FFD_EXT_COFFS FFD_EXT_SI ZE file extension
(max. 3 synbol s)
FFD LONG NAME OFFS FFD LONG NAME SI ZE long file nane

FFD_ABRI DGED NAME_OFFS |FFD ABRI DGED NAVE S| ZE |abridged file nane

Not e:

1. The follow ng subroutines searches only for short file nanes
(the nanes in the format 8.3). So two |ong names with 6 or
nore equal first characters can not be differentiated.

2. If the file nane was found and there is an entry for the |ong
name, this long nane will be saved in the nenory bl ock at the
FFD_LONG NAME_OFFS offset or at the FFD_ABRI DGED NAME OFFS
offset (if this formof presentation was preferred).

3. The file name at the FFD _NAMVE OFFS offset is extended with
bl anks up to FFD NAME SI ZE (8) size; the file extension at
the FFD EXT_OFFS offset — up to FFD EXT_SI ZE (3) si ze.

4. The abridged form of presentation nmakes sense if one knows
that the file name is in the format 8.3 and one would like to
use the found nane (placed at the FFD ABRI DGED NAVE OFFS
offset in the format 8.3 with dot and w t hout extending
bl anks) directly in the next file operation.

5. The size of the nenory bl ock can be equal or greater than
FFD_STRUCT_SHORT_SI ZE.

6. The follow ng size constants are predefined:

- FFD _STRUCT_SHORT _SI ZE — without fields for the | ong or
abridged file name

- FFD_STRUCT_ABRI DGED_SI ZE - FFD_STRUCT_SHORT_SI ZE + the
maxi mal | ength of the file nane in the abridged form
(FFD_NAMVE_SI ZE + FFD EXT_SIZE + 1[for "dot"])

- FFD_STRUCT_FULL_SI ZE - FFD_STRUCT_SHORT_SI ZE + the
maxi mal | ength of the long file nane

- FFD_STRUCT _DEFAULT_SI ZE - FFD_STRUCT_ABRI DGED SI ZE

18

Searching for the file nane

Subr out i ne:
sub bFindFirstFile(string spSearchedFil eNane$; var string
spvFf dStruct $; var byte bpvFound)

The bFindFirstFile subroutine searches a directory for a file
whose nane matches the specified spSearchedFil eNane$ fil enane

and fills on success the spvFfdStruct$ string with the information
about the found file. The spSearchedFil eNane$ fil enane can contain
wi | dcard characters (* and ?).

Thi s subroutine returns in bpvFound TRUE on success, and FALSE on
error.

Subr out i ne:
sub bFindNextFile(var string spvFfdStruct$; var byte bpvFound)

The bFi ndNext File subroutine continues the searching a directory
for a file whose nane matches the filenanme that was specified in
the previous call of the bFindFirstFile subroutine in the

par amet er spSearchedFi | eName$ and fills on success the
spvFfdStruct$ string with the informati on about the found file.
The process begins at the position next to the position where the
previ ous search was successfully conpleted by the bFindFirstFile
or bFi ndNext Fil e subroutine.

Thi s subroutine returns in bpvFound TRUE on success, and FALSE on
error.

Exanmple: “file_find. tig”

19

Getting the informati on about the storage nedia

Subr out i ne:
sub bGCet Hardwar el nf o(_var string spvlnfoSet$; var byte bpvlsRead)

The bGet Har dwar el nfo subroutine reads the information about the
currently used storage nedia into the spvinfoSet$ string.

The bGet Hardwar el nfo subroutine returns TRUE in the bpvlsRead on
successful reading, and FALSE on error.

The bGet Har dwar el nfo subrouti ne saves the result in the
spvinfoSet$ string used as a nenory bl ock storing the data of
different types and sizes. The particular fields of such a block
can be accessed by neans of the built-in functions (like nfrons,
rfroms, m d$ etc) reading the definite nunber of bytes fromthe
specific offset into a variable. The follow ng of fset and size
val ues can be applied for accessing the information about a the
st orage nedi a:

O fset Size Descri ption

HDI _MAKER CODE_PCS HDI _MAKER CODE_SI ZE Manuf act urer Code

HDI D CODE_PCS HDI D CODE SI ZE Card Identifier

HDI _BYTES | N_SPARE_POS|HDI _BYTES | N_SPARE_SI ZE|Nunber of Bytes in
Spare Field

HDI _BYTES | N PAGE_POS |HDI _BYTES | N PAGE_SI ZE |Nunber of DATA
Bytes in a Page

HDI _PAGES_| N_BLOCK_POS|HDI _PAGES_| N_BLOCK_SI ZE|[Nunber of Pages in
a Bl ock

HDI _BYTES | N BLOCK_POS|HDI _BYTES | N_BLOCK_SI ZE|Nunber of DATA
Bytes in a Bl ock

HDI NO OF BLOCKS POCs HDI NO OF BLOCKS Sl ZE Total Nunber of
Bl ocks

HDI _ADR H GH BLOCK POS|HDI _ADR HI GH BLOCK SI ZE|Base Address of the
hi ghest Bl ock

HDI _ADR END PGS HDI _ADR END SI ZE End Address = First
Address after the
| ast Byte

Not e:

The size of the spvinfoSet$ string nust be equal or greater than
HDI _BLOCK_SI ZE.

Exanpl e: “get_hd_info.tig”

20

Getting the informati on about the file system

Subr out i ne:
sub bGet Fil eSystem nf o(_var string spvBoot Record$;: var byte
bpvl sBoot RecRead)

The bGet Fil eSystem nfo subroutine reads the informati on about the
file systeminto the spvBoot Record$ string. The information is
extracted fromthe boot record of a FAT-formatted storage nedi a.

The bGet Fil eSystenm nfo subroutine returns TRUE in the
bpvl sBoot RecRead on successful reading, and FALSE on error.

The bGetFil eSystenl nfo subroutine saves the result in the
spvBoot Record$ string used as a nenory block storing the data of
different types and sizes. The particular fields of such a bl ock
can be accessed by neans of the built-in functions (like nfrons,
rfroms, m d$ etc) reading the definite nunber of bytes fromthe
specific offset into a variable. The foll ow ng of fset and size
val ues can be applied for accessing the information about a the
storage nedi a:

O fset Si ze Descri ption

BS OCEM NAME_POS BS CEM NAME_SI ZE t he systemt hat
formatted the
di sk

BPB_BYTES_PER SECT_POS |BPB_BYTES_PER SECT _SIZE |the length in
byt es of one
physi cal sector

BPB_SECT_PER _CLUSTER POS|BPB_SECT_PER CLUSTER SI ZE|t he nunber of
sectors in one
| ogi cal cluster

BPB RESERVED SECT PGS BPB RESERVED SECT SI ZE t he nunmber of
reserved
sectors

BPB_NUMBER _OF_FATS POS |BPB_NUVBER OF FATS SIZE |t he number of
File Allocation
Tabl es

BPB_ROOT_ENTRI ES _POS BPB_ROOT_ENTRI ES_SI ZE t he nunber of
entries in the
root directory

BPB TOTAL_ SECT_ POS BPB TOTAL_SECT_SI ZE total nunber of
sectors on the
di sk

BPB_VEDI A_PCS BPB_MEDI A_SI ZE medi a
descri pt or

BPB SECT PER FAT POCS BPB SECT PER FAT SI ZE t he nunmber of
sectors in one
FAT

BPB _HI DDEN SECT PGS BPB HI DDEN SECT SI ZE t he nunmber of
hi dden sectors

BPB_TOTAL_SECT BI G POS |BPB _TOTAL_SECT BIG SIZE |the a nunmber of

sectors if
greater 65535
BS VOLUVE LABEL_ POCS BS VOLUVE LABEL_SI ZE t he di sk | abel

21

BS_FI LE_SYSTEM POS

BS FI LE_SYSTEM SI ZE

the file system
name (FAT12/16)

Not e:

The size of the spvBoot Record$ string nust be equal or greater

t han BOOT_RECORD Sl ZE

Exanpl e: “get_fs_info.tig”

22

Formatting the Storage Media

Subr out i ne:
sub bFor mat Medi aLogi cal Wn(_var byte bpvSuccess)

The bFor mat Medi aLogi cal Wn subroutine formats a storage nedi a
(f.e. SmartMedia) using the settings preferred by the Wndows own
formatting routines.

This subroutine returns in bpvSuccess TRUE on success, and FALSE
on error.

Subr outi ne:
sub bFor nat Medi aLogi cal (_var byte bpvSuccess)

The bFor mat Medi aLogi cal subroutine formats a storage nedia (f.e.
Smart Medi a) using the settings recomrended by the SSFDC Forum

This subroutine returns in bpvSuccess TRUE on success, and FALSE
on error.

Example: “file_format.tig”

23

Synchroni zing the File System

For reasons of efficiency, sone intensively used data structures
of the FAT file systemare tenporary stored in the RAM nenory
while the file systemoperations are perforned. Before the

per manent storage nedia (f. e. SmartMedia) is unplugged, all the
data structures nust be copied fromthe RAMto the pernanent
storage nedia. The process of copying of the data is naned
“synchroni zation”. The synchroni zati on may be perforned either by
calling the vSynchroni zeFS subroutine explicitly or by

i npl ementing a task, that sets a value of the synchronization

ti meout using the | Set SyncTi neout subroutine and calls in the
endl ess | oop the bSynchroni zeFSRegul arly subrouti ne.

The synchroni zation tinmeout values are neasured in seconds.

Subr outi ne:
sub _vSynchr oni zeFS()

The vSynchroni zeFS subroutine wites to the nedia all data
structures that were tenporary saved in the RAM

Subr outi ne:
sub | Get SyncTi neout (_var |ong | pvSyncTi neout; var |ong
| pvCur SyncTi nmeout Count er)

The | Get SyncTi meout subroutine returns the recently set
synchroni zation timeout value in the | pvSyncTi neout and the
current value of the tinmeout counter in the

| pvCur SyncTi meout Count er .

If the tinmeout val ues have not been yet initialised, the
| Get SyncTi meout subroutine returns -1 in the both | pvSyncTi nmeout
and | pvCur SyncTi neout Count er.

Subr outi ne:
sub | Set SyncTi neout (| ong | NewSyncTi neout; var | ong
| pvPrevSyncTi neout)

The | Set SyncTi meout subroutine sets the new synchronization
ti meout value to the | NewSyncTi nmeout val ue.

The | Set SyncTi meout subroutine returns the previously set
synchroni zation timeout value in the | pvPrevSyncTi neout or -1 if
it has not been yet initialised.

Subr outi ne:
sub bSynchroni zeFSRequl arl y(var byte bpvTi neout Reached)

The bSynchroni zeFSRegul arly subroutine calls the vSynchroni zeFS
subrouti ne when the synchronization tineout is over.

24

This subroutine returns in the bpvTi meout Reached TRUE if the
synchroni sati on was perforned, else FALSE is returned.

Exanple: “file_sync.tig”

25

VWhat Miust Be Done

Sonme subroutines are too slow. The execution speed nust be
i ncreased by means of inproved algorithms or built-in
functions witten in the processor |anguage directly.

ECC correction process for SmartMedia is not inplenmented at
t he nonent.

Al though long file names are supported, it’s not possible to
differentiate files wwth identical first 6 characters.

The information about errors is very scanty. The error
messages nust be extended. Probably, sonething |ike the
Cet Last Error subroutine will be inplenented.

The subroutines were tested with 8My, 32My, 64M Snart Medi a
cards. Additional tests would be usef ul

It is conceivable to use the BTFS with other kinds of storage
medi a, not only with Smart Medi a card. For exanple, one can

i npl enent the hardware support |ayer for the Basic Tiger

i nternal user flash.

The BTFS subroutines are not re-entrant. It can be inportant
to find a way to make the BTFS subroutines re-entrant w thout
conprom sing the efficiency.

More comrents in the progranms and better docunmentation is
everyone’s nost fervent w sh. ©

26

Usef ul Ref erences

1. SmartMedia Card Specifications:

http://ww.ssfdc.or.jp/english/index.htm

2. About FAT:

http://averstak.tripod. coni fatdox/00di ndex. htm

http://nsdn. m crosoft.com

27

