

Basic Tiger File System for
SmartMedia

Version 1.04

 2

Introduction...4

BTFS for SmartMedia Card ...4

BTFS for SmartMedia File List..4
FS Include Files (directory “File_System”)...4
FS Examples (directory “File_System”)..5
SmartMedia Device Drivers (directory “TB_Drivers” or “Bin”) ..5
SmartMedia Functions (directory “TB_System_Files” or “Bin”) ...5
SmartMedia Low Level Examples (directory “Random_Access”) ...5

Supported SmartMedia Card Types and Other Limitations ..5

BTFS System Requirements ...5

File System API (application program interface)..6

File System Setup ...6
Initialising the File System Hardware..6
Setting Up the File System...6

Opening and Closing Files...7
Opening the File...7
Closing the File ..9

File Input and File Output ..10
Reading the File ...10
Writing the File ..10

Setting and Getting the File Position of a Descriptor ...11
Getting the File Position ..11
Setting the File Position ...11

Getting the File Size ...12

Creating Directories...13

Deleting Files and Directories ...13

Setting Current Directory ...13

File Attributes...14
Getting the File Attributes..14
Setting the File Attributes ..15

File Time ...16
Time and Date Format ...16
Getting the File Time ...16
Setting the File Time..16

Find File ..18
Searching for the file name ..19

Getting the information about the storage media ...20

Getting the information about the file system...21

Formatting the Storage Media..23

Synchronizing the File System..24

What Must Be Done..26

 3

Useful References..27

 4

Introduction
Basic Tiger File System (BTFS) is a collection of subroutines
written in the Tiger Basic programming language and implementing
general functionality of FAT file system for permanent storage
devices. BTFS consists of three hierarchical layers: File System
API, FAT implementation, special hardware support. A device driver
for the particular hardware underlies the BTFS.

BTFS for SmartMedia Card
BTFS for SmartMedia Card has the following structure:
FS API ÅFAT ÅSmartMedia Routines ÅSmartMedia Device Driver.

FS API is a set of subroutines working with files and directories.
FS API layer is considered to be the most interesting layer for an
application programmer and exactly this layer is described more
detailed in the present document.

FAT is an implementation of FAT12/FAT16 file system (with long
names support).

SmartMedia Routines is a set of subroutines written with regard to
the specifications of SmartMedia card devices.

SmartMedia Device Driver is a Basic Tiger device driver
implementing elementary interface between SmartMedia hardware and
a Tiger Basic application.

BTFS for SmartMedia File List

FS Include Files (directory “File_System”)

fs_conf.inc - definitions that can be changed by user
fs_coinc.inc - definitions relevant for all FS layers;

co-including of all FS components. Only this file must be
explicitly included in the Tiger Basic application using
BTFS.

fs_inx_i.inc - implementation of FS API and some maintaining
 subroutines.
fs_inx_d.inc - definitions relevant for FS API.
fs_fat_i.inc - implementation of FAT12/FAT16 with long names

support.
fs_fat_d.inc - definitions useful for FAT12/FAT16

 implementation.
fs_fmt_i.inc - implementation of formatting process.
fs_dat_i.inc - implementation of date and time conversions.
fs_dat_d.inc - definitions relevant for date and time
 conversions.
fs_hal_d.inc - definition of Hardware Abstraction Layer;

HAL is used to simplify the adaptation of the file system
subroutines to the working with other storage devices.

fs_smc_i.inc - implementation of subroutines working with
 SmartMedia and conforming to the SmartMedia
 specifications and to the special features of the
 SmartMedia device driver.

 5

fs_smc_d.inc - definitions relevant for SmartMedia
 subroutines.
fs_ecc_i.inc - implementation of ECC calculation for
 SmartMedia.

FS Examples (directory “File_System”)

dir_create_del.tig, file_open.tig, file_size.tig,
file_pointer.tig, file_attributes.tig, file_time.tig,
file_format.tig, file_sync.tig, file_copy.tig, file_find.tig,
get_hd_info.tig, get_fs_info.tig

SmartMedia Device Drivers (directory “TB_Drivers” or “Bin”)

smedia_16mb.tdd, smedia_32mb.tdd, smedia_64mb.tdd,
smedia_128mb.tdd
Any device driver fits for all SmartMedia cards of the exact
or smaller size.

SmartMedia Functions (directory “TB_System_Files” or “Bin”)

Some new built-in functions are extensively used by the BTFS
subroutines. The functions are located in the following
enclosed system files:
tac0000.tac, tac0000_.tac, tac0100.tac, tac0100_.tac
The enclosed system files require the Tiger Basic compiler
version 5.01 or higher.

SmartMedia Low Level Examples (directory “Random_Access”)

smedia_test_era_wr_rd_ser0_v03.tig,
smedia_hex_dump_to_ser_02.tig
Note: This test may destroy very important SmartMedia header
information and make the SmartMedia card unusable.

Supported SmartMedia Card Types and Other Limitations
The following SmartMedia card types are supported by BTFS at
present: 1Mb, 2Mb, 4Mb, 8Mb, 16Mb, 32Mb, 64Mb, 128Mb.

Most formatting programs use FAT12/FAT16 format for the various
types of SmartMedia cards, but can be set to use other formats.
You should avoid this as only FAT12/FAT16 is supported by BTFS.

Although long file names are supported, it’s not possible to
differentiate files with identical first 6 characters.

The BTFS subroutines are not re-entrant. Be careful using the BTFS
subroutines in the different tasks.

BTFS System Requirements
BTFS requires the Tiger Basic compiler version 5.01 or higher. The
enclosed system files (extension: TAC) must be copied to the
“..\Bin” directory of the Tiger Basic software.

 6

File System API (application program
interface)

File System Setup

Initialising the File System Hardware

Subroutine:
sub bFileSystemHardwareInit(var byte bpvHdInitOk)

The bFileSystemHardwareInit subroutine calls special subroutines
initializing a particular storage medium (f.e.: SmartMedia) that
is to be used by the file system. This subroutine retrieves also
the parameters of the storage medium.

This subroutine returns in bpvHdInitOk TRUE on successful
initializing, and FALSE on error.

Be prepared: This subroutine may take a long time when run with
SmartMedia.

Example: all

Setting Up the File System

Subroutine:
sub bSetupFileSystem(var byte bpvIsFSSetupOk)

The bSetupFileSystem subroutine initializes internal file system
data, reads the boot sector and retrieves current file system
settings.

This subroutine returns in bpvIsFSSetupOk TRUE on success, and
FALSE on error.

Example: nearly all

 7

Opening and Closing Files

Opening the File

Subroutine:
sub lOpenFile(string spFileName$; long lpFlags; var long
lpvHandle)

The lOpenFile subroutine creates and returns a new file descriptor
for the file named by spFileName$. Initially, the file position
indicator for the file is at the beginning of the file.

The lpFlags argument controls how the file is to be opened. This
is a bit mask; you create the value by using bitwise OR on the
appropriate parameters (using the ‘bitor’ operator in TB). File
status flags lpFlags fall into three following categories.

File Access Modes:
The file access modes allow a file descriptor to be used for
reading, writing, or both. The access modes are chosen when the
file is opened, and never change.
O_RDONLY

Open the file for read access.
O_WRONLY

Open the file for write access.
O_RDWR

Open the file for both reading and writing.
O_RDONLY and O_WRONLY are independent bits that can be bitwise-
ORed together, and it is valid for either bit to be set or clear.
This means that O_RDWR is the same as O_RDONLY|O_WRONLY. A file
access mode of zero is equal in meaning to O_RDWR.

Open-time Flags:
The open-time flags specify options affecting how open will behave.
These options are not preserved once the file is open.
O_CREAT

The file will be created if it doesn't already exist.
O_EXIST

Check, whether the file exists, don’t open the file. In the
case of a success the return value is zero, which does not
mean that a file descriptor was assigned to an opened file.

I/O Operating Modes:
The operating modes affect how input and output operations using a
file descriptor work.
O_APPEND

The bit that enables append mode for the file. If set, then
all ‘write’ operations write the data at the end of the file,
extending it, regardless of the current file position. This is
the only reliable way to append to a file.

The normal return value lpvHandle from lOpenFile is a non-negative
long integer file descriptor. In the case of an error, a value of
{-1} is returned instead.

 8

Example: “file_open.tig”

 9

Closing the File

Subroutine:
sub bCloseFile(long lpHandle; var byte bpvIsFileClosed)

The bCloseFile subroutine closes the file descriptor lpHandle.

The normal return value bpvIsFileClosed from bCloseFile is TRUE.
If the file descriptor lpHandle is invalid, the value
bpvIsFileClosed is assigned to FALSE.

Example: “file_open.tig”

 10

File Input and File Output

Reading the File

Subroutine:
sub lReadFile(long lpHandle; var string spvBuffer$; long lpSize;
var long lpvNumBytesRead)

The lReadFile subroutine reads up to lpSize bytes from the file
with descriptor lpHandle, storing the results in the spvBuffer$.
(This is not necessarily a character string, and no terminating
null character is added.)

The return value lpvNumBytesRead is the number of bytes actually
read. This might be less than lpSize; for example, if there aren't
that many bytes left in the file. Note that reading less than
lpSize bytes is not an error.

A value of zero indicates end-of-file (except if the value of the
lpSize argument is also zero). This is not considered an error. If
you keep calling lReadFile while at end-of-file, it will keep
returning zero and doing nothing else.
If lReadFile returns at least one character, there is no way you
can tell whether end-of-file was reached. But if you did reach the
end, the next read will return zero.
In case of an error, lReadFile returns {-1}.

Example: “file_open.tig”

Writing the File

Subroutine:
sub lWriteFile(long lpHandle; string spBuffer$; long lpSize; var
long lpvNumBytesWritten)

The lWriteFile subroutine writes up to lpSize bytes from spBuffer$
to the file with descriptor lpHandle. The data in spBuffer$ is not
necessarily a character string and a null character is output like
any other character.

The return value is the number of bytes actually written. This may
be lpSize, but can be smaller. Your program should call lWriteFile
in a loop, iterating until all the data is written.
In the case of an error, lWriteFile returns {-1}.

Example: “file_open.tig”

 11

Setting and Getting the File Position of a Descriptor

The File Position of a Descriptor specifies the position in the
file for the next read or write operation.

Getting the File Position

Subroutine:
sub lGetFilePointer(long lpHandle; var long lpvCurFilePtr)

The lGetFilePointer subroutine is used to read the file position
of the file with descriptor lpHandle.

The return value lpvCurFilePtr from lGetFilePointer is normally
the current file position, measured in bytes from the beginning of
the file. If the value of file descriptor is invalid,
lGetFilePointer returns a value of {-1}.

Example: “file_pointer.tig”

Setting the File Position

Subroutine:
sub lSetFilePointer(long lpHandle; long lpOffset; byte bpWhence;
var long lpvNewFilePtr)

The lSetFilePointer subroutine is used to change the file position
of the file with descriptor lpHandle.

The bpWhence argument specifies how the lpOffset should be
interpreted, and it must be one of the symbolic constants
FILE_BEGIN, FILE_CURRENT, or FILE_END.
FILE_BEGIN

Specifies that bpWhence is a count of characters from the
beginning of the file. This count must be positive.

FILE_CURRENT
Specifies that bpWhence is a count of characters from the
current file position. This count may be positive or negative.

FILE_END
Specifies that bpWhence is a count of characters from the end
of the file. This count must be positive.

The return value lpvNewFilePtr from lSetFilePointer is normally
the resulting file position, measured in bytes from the beginning
of the file. You can use this feature together with FILE_CURRENT
to read the current file position, though the using of
lGetFilePointer is more efficient.
If the file position cannot be changed, or the operation is in
some way invalid, lSetFilePointer returns a value of {-1}.
The position past the current end can not be set, and the file can
not be extended by using of lSetFilePointer.

Example: “file_pointer.tig”

 12

Getting the File Size

Subroutine:
sub lGetFileSize(long lpHandle; var long lpvFileSize)

The lGetFileSize subroutine is used to read the file size of the
file with descriptor lpHandle.

The return value lpvFileSize from lGetFileSize is normally the
file size, measured in bytes. The subroutine lGetFileSize returns
a value of {-1} on error.

Example: “file_size.tig”

 13

Creating Directories

Subroutine:
sub bCreateDirectory(string spFileName$; var byte bpvIsCreated)

The bCreateDirectory subroutine creates a new, empty directory
with name spFileName$.

A return value bpvIsCreated of TRUE indicates successful
completion, and FALSE indicates failure.

Example: “dir_create_del.tig”

Deleting Files and Directories

Subroutine:
sub bDeleteFile(string spFileName$; var byte bpvIsDeleted)

The bDeleteFile subroutine deletes the file or the directory
spFileName$.
A read-only file (i.e. a file with the set “DIR_ATTR_READONLY”
attribute) cannot be removed.
A directory must be empty before it can be removed; in other
words, it can only contain entries for ‘.’ and ‘..’.

This subroutine returns in bpvIsDeleted TRUE on successful
completion, and FALSE on error.

Example: “dir_create_del.tig”

Setting Current Directory

Current Directory is a directory to which every not absolute path
is related. A root directory name consists of one character "\"
("/" is also accepted). An absolute path begins always with the
root directory name. A relative path must never have the root
directory name as a very first part of the whole path.

Subroutine:
sub bSetCurrentDir(string spNewCurrentDir$;var byte bpvIsDirSet)

The bSetCurrentDir subroutine sets Current Directory to the
spNewCurrentDir$.

This subroutine returns in bpvIsDirSet TRUE on successful setting,
and FALSE on error.

Example: “dir_create_del.tig”

 14

File Attributes

File Attribute is a byte value describing the most common
properties of any particular file system entry (file or
directory). A File Attribute is a combination of following
constants:
DIR_ATTR_FILE
 The entry is a file.

DIR_ATTR_READONLY

The file or directory is read-only. Applications can read the
file but cannot write to it or delete it. In the case of a
directory, applications cannot delete it.

DIR_ATTR_SYSTEM

The file or directory is part of, or is used exclusively by,
the operating system.

DIR_ATTR_HIDDEN

The file or directory is hidden. It is not included in an
ordinary directory listing.

DIR_ATTR_VOLUME

Volume label attribute means that this entry contains the disk
label in the filename and extension fields. Volume label is
valid only in the root directory. Common sense says, there
should be only one volume label per disk. For the entry to
really contain the volume label, the attribute should be
exactly DIR_ATTR_VOLUME.

DIR_ATTR_DIRECTORY
 The entry is a directory.

DIR_ATTR_ARCHIVE

The file or directory is an archive file or directory.
Applications use this flag to mark files for backup or
removal.

Getting the File Attributes

Subroutine:
sub bGetFileAttributes(string spFileName$; var byte bpvFileAttr;
var byte bpvAttrReadOk)

The bGetFileAttributes subroutine reads a File Attribute value of
the file spFileName$, storing the result in the bpvFileAttr.

This subroutine returns in bpvAttrReadOk TRUE on successful
reading, and FALSE on error.

Example: “file_attributes.tig”

 15

Setting the File Attributes

Subroutine:
sub bSetFileAttributes(string spFileName$; byte bpNewFileAttr;
var byte bpvAttrSetOk)

The bSetFileAttributes subroutine writes a new File Attribute
value bpNewFileAttr of the file spFileName$.

This subroutine returns in bpvAttrSetOk TRUE on successful
writing, and FALSE on error.

Example: “file_attributes.tig”

 16

File Time

Time and Date Format

The file time fields have the following format:
Bits Range Translated Range Valid Range Description
0..4 0..31 0..62 0..59 Seconds/2
5..10 0..63 0..63 0..59 Minutes
11..15 0..31 0..31 0..23 Hours

The file date fields have the following format:
Bits Range Translated Range Valid Range Description
0..4 0..31 0..31 1..28 up to

1..31
Day

5..8 0..15 0..15 1..12 Month
9..15 0..127 1980..2107 1980..2107 Year, add 1980 to

convert

Getting the File Time

Subroutine:
sub bGetFileTime(string spFileName$; var word wpvCreateDate,
wpvCreateTime, wpvAccessDate, wpvWriteDate, wpvWriteTime; var byte
bpvIsTimeRead)

The bGetFileTime subroutine retrieves the date and time that a
file spFileName$ was created, last accessed, and last modified.

wpvCreateDate
 The date the file was created.
wpvCreateTime
 The time the file was created.
wpvAccessDate
 The date the file was last accessed.
wpvWriteDate
 The date the file was last modified.
wpvWriteTime
 The time the file was last modified.

All the time and date fields are represented in the format
described in the "Time and Date Format".

Example: “file_time.tig”

Setting the File Time

Subroutine:
sub bSetFileTime(string spFileName$; word wpCreateDate,
wpCreateTime, wpAccessDate, wpWriteDate, wpWriteTime; var byte
bpvIsTimeWritten)

The bSetFileTime subroutine sets the date and time that a file
spFileName$ was created, last accessed, and last modified.

 17

wpCreateDate
 The date the file was created.
wpCreateTime
 The time the file was created.
wpAccessDate
 The date the file was last accessed.
wpWriteDate
 The date the file was last modified.
wpWriteTime
 The time the file was last modified.

All the time and date fields are represented in the format
described in the "Time and Date Format".

Example: “file_time.tig”

 18

Find File
Two subroutines described below return the result of the searching
in a string used as a memory block storing the data of different
types and sizes. The particular fields of such a block can be
accessed by means of the built-in functions (like nfroms, rfroms,
mid$ etc) reading the definite number of bytes from the specific
offset into a variable. The following offset and size values can
be applied for accessing the information about a found file:

Offset Size Description
FFD_ATTR_OFFS FFD_ATTR_SIZE file attribute
FFD_CREATE_TIME_MS_OFFS FFD_CREATE_TIME_MS_SIZE ms part of file

creating time
FFD_CREATE_TIME_OFFS FFD_CREATE_TIME_SIZE file creating time
FFD_CREATE_DATE_OFFS FFD_CREATE_DATE_SIZE file creating date
FFD_ACCESS_DATE_OFFS FFD_ACCESS_DATE_SIZE date of the last

file access
FFD_SIZE_OFFS FFD_SIZE_SIZE file size
FFD_NAME_OFFS FFD_NAME_SIZE file name (max. 8

symbols)
FFD_EXT_OFFS FFD_EXT_SIZE file extension

(max. 3 symbols)
FFD_LONG_NAME_OFFS FFD_LONG_NAME_SIZE long file name
FFD_ABRIDGED_NAME_OFFS FFD_ABRIDGED_NAME_SIZE abridged file name

Note:

1. The following subroutines searches only for short file names
(the names in the format 8.3). So two long names with 6 or
more equal first characters can not be differentiated.

2. If the file name was found and there is an entry for the long
name, this long name will be saved in the memory block at the
FFD_LONG_NAME_OFFS offset or at the FFD_ABRIDGED_NAME_OFFS
offset (if this form of presentation was preferred).

3. The file name at the FFD_NAME_OFFS offset is extended with
blanks up to FFD_NAME_SIZE (8) size; the file extension at
the FFD_EXT_OFFS offset – up to FFD_EXT_SIZE (3) size.

4. The abridged form of presentation makes sense if one knows
that the file name is in the format 8.3 and one would like to
use the found name (placed at the FFD_ABRIDGED_NAME_OFFS
offset in the format 8.3 with dot and without extending
blanks) directly in the next file operation.

5. The size of the memory block can be equal or greater than
FFD_STRUCT_SHORT_SIZE.

6. The following size constants are predefined:
- FFD_STRUCT_SHORT_SIZE – without fields for the long or

abridged file name
- FFD_STRUCT_ABRIDGED_SIZE - FFD_STRUCT_SHORT_SIZE + the

maximal length of the file name in the abridged form
(FFD_NAME_SIZE + FFD_EXT_SIZE + 1[for "dot"])

- FFD_STRUCT_FULL_SIZE - FFD_STRUCT_SHORT_SIZE + the
maximal length of the long file name

- FFD_STRUCT_DEFAULT_SIZE - FFD_STRUCT_ABRIDGED_SIZE

 19

Searching for the file name

Subroutine:
sub bFindFirstFile(string spSearchedFileName$; var string
spvFfdStruct$; var byte bpvFound)

The bFindFirstFile subroutine searches a directory for a file
whose name matches the specified spSearchedFileName$ filename
and fills on success the spvFfdStruct$ string with the information
about the found file. The spSearchedFileName$ filename can contain
wildcard characters (* and ?).

This subroutine returns in bpvFound TRUE on success, and FALSE on
error.

Subroutine:
sub bFindNextFile(var string spvFfdStruct$; var byte bpvFound)

The bFindNextFile subroutine continues the searching a directory
for a file whose name matches the filename that was specified in
the previous call of the bFindFirstFile subroutine in the
parameter spSearchedFileName$ and fills on success the
spvFfdStruct$ string with the information about the found file.
The process begins at the position next to the position where the
previous search was successfully completed by the bFindFirstFile
or bFindNextFile subroutine.

This subroutine returns in bpvFound TRUE on success, and FALSE on
error.

Example: “file_find.tig”

 20

Getting the information about the storage media

Subroutine:
sub bGetHardwareInfo(var string spvInfoSet$; var byte bpvIsRead)

The bGetHardwareInfo subroutine reads the information about the
currently used storage media into the spvInfoSet$ string.

The bGetHardwareInfo subroutine returns TRUE in the bpvIsRead on
successful reading, and FALSE on error.

The bGetHardwareInfo subroutine saves the result in the
spvInfoSet$ string used as a memory block storing the data of
different types and sizes. The particular fields of such a block
can be accessed by means of the built-in functions (like nfroms,
rfroms, mid$ etc) reading the definite number of bytes from the
specific offset into a variable. The following offset and size
values can be applied for accessing the information about a the
storage media:

Offset Size Description
HDI_MAKER_CODE_POS HDI_MAKER_CODE_SIZE Manufacturer Code
HDI_ID_CODE_POS HDI_ID_CODE_SIZE Card Identifier
HDI_BYTES_IN_SPARE_POS HDI_BYTES_IN_SPARE_SIZE Number of Bytes in

Spare Field
HDI_BYTES_IN_PAGE_POS HDI_BYTES_IN_PAGE_SIZE Number of DATA

Bytes in a Page
HDI_PAGES_IN_BLOCK_POS HDI_PAGES_IN_BLOCK_SIZE Number of Pages in

a Block
HDI_BYTES_IN_BLOCK_POS HDI_BYTES_IN_BLOCK_SIZE Number of DATA

Bytes in a Block
HDI_NO_OF_BLOCKS_POS HDI_NO_OF_BLOCKS_SIZE Total Number of

Blocks
HDI_ADR_HIGH_BLOCK_POS HDI_ADR_HIGH_BLOCK_SIZE Base Address of the

highest Block
HDI_ADR_END_POS HDI_ADR_END_SIZE End Address = First

Address after the
last Byte

Note:
The size of the spvInfoSet$ string must be equal or greater than
HDI_BLOCK_SIZE.

Example: “get_hd_info.tig”

 21

Getting the information about the file system

Subroutine:
sub bGetFileSystemInfo(var string spvBootRecord$; var byte
bpvIsBootRecRead)

The bGetFileSystemInfo subroutine reads the information about the
file system into the spvBootRecord$ string. The information is
extracted from the boot record of a FAT-formatted storage media.

The bGetFileSystemInfo subroutine returns TRUE in the
bpvIsBootRecRead on successful reading, and FALSE on error.

The bGetFileSystemInfo subroutine saves the result in the
spvBootRecord$ string used as a memory block storing the data of
different types and sizes. The particular fields of such a block
can be accessed by means of the built-in functions (like nfroms,
rfroms, mid$ etc) reading the definite number of bytes from the
specific offset into a variable. The following offset and size
values can be applied for accessing the information about a the
storage media:

Offset Size Description
BS_OEM_NAME_POS BS_OEM_NAME_SIZE the system that

formatted the
disk

BPB_BYTES_PER_SECT_POS BPB_BYTES_PER_SECT_SIZE the length in
bytes of one
physical sector

BPB_SECT_PER_CLUSTER_POS BPB_SECT_PER_CLUSTER_SIZE the number of
sectors in one
logical cluster

BPB_RESERVED_SECT_POS BPB_RESERVED_SECT_SIZE the number of
reserved
sectors

BPB_NUMBER_OF_FATS_POS BPB_NUMBER_OF_FATS_SIZE the number of
File Allocation
Tables

BPB_ROOT_ENTRIES_POS BPB_ROOT_ENTRIES_SIZE the number of
entries in the
root directory

BPB_TOTAL_SECT_POS BPB_TOTAL_SECT_SIZE total number of
sectors on the
disk

BPB_MEDIA_POS BPB_MEDIA_SIZE media
descriptor

BPB_SECT_PER_FAT_POS BPB_SECT_PER_FAT_SIZE the number of
sectors in one
FAT

BPB_HIDDEN_SECT_POS BPB_HIDDEN_SECT_SIZE the number of
hidden sectors

BPB_TOTAL_SECT_BIG_POS BPB_TOTAL_SECT_BIG_SIZE the a number of
sectors if
greater 65535

BS_VOLUME_LABEL_POS BS_VOLUME_LABEL_SIZE the disk label

 22

BS_FILE_SYSTEM_POS BS_FILE_SYSTEM_SIZE the file system
name (FAT12/16)

Note:

The size of the spvBootRecord$ string must be equal or greater
than BOOT_RECORD_SIZE.

Example: “get_fs_info.tig”

 23

Formatting the Storage Media

Subroutine:
sub bFormatMediaLogicalWin(var byte bpvSuccess)

The bFormatMediaLogicalWin subroutine formats a storage media
(f.e. SmartMedia) using the settings preferred by the Windows own
formatting routines.

This subroutine returns in bpvSuccess TRUE on success, and FALSE
on error.

Subroutine:
sub bFormatMediaLogical(var byte bpvSuccess)

The bFormatMediaLogical subroutine formats a storage media (f.e.
SmartMedia) using the settings recommended by the SSFDC Forum.

This subroutine returns in bpvSuccess TRUE on success, and FALSE
on error.

Example: “file_format.tig”

 24

Synchronizing the File System

For reasons of efficiency, some intensively used data structures
of the FAT file system are temporary stored in the RAM memory
while the file system operations are performed. Before the
permanent storage media (f. e. SmartMedia) is unplugged, all the
data structures must be copied from the RAM to the permanent
storage media. The process of copying of the data is named
“synchronization”. The synchronization may be performed either by
calling the vSynchronizeFS subroutine explicitly or by
implementing a task, that sets a value of the synchronization
timeout using the lSetSyncTimeout subroutine and calls in the
endless loop the bSynchronizeFSRegularly subroutine.
The synchronization timeout values are measured in seconds.

Subroutine:
sub vSynchronizeFS()

The vSynchronizeFS subroutine writes to the media all data
structures that were temporary saved in the RAM.

Subroutine:
sub lGetSyncTimeout(var long lpvSyncTimeout; var long
lpvCurSyncTimeoutCounter)

The lGetSyncTimeout subroutine returns the recently set
synchronization timeout value in the lpvSyncTimeout and the
current value of the timeout counter in the
lpvCurSyncTimeoutCounter.

If the timeout values have not been yet initialised, the
lGetSyncTimeout subroutine returns –1 in the both lpvSyncTimeout
and lpvCurSyncTimeoutCounter.

Subroutine:
sub lSetSyncTimeout(long lNewSyncTimeout; var long
lpvPrevSyncTimeout)

The lSetSyncTimeout subroutine sets the new synchronization
timeout value to the lNewSyncTimeout value.

The lSetSyncTimeout subroutine returns the previously set
synchronization timeout value in the lpvPrevSyncTimeout or –1 if
it has not been yet initialised.

Subroutine:
sub bSynchronizeFSRegularly(var byte bpvTimeoutReached)

The bSynchronizeFSRegularly subroutine calls the vSynchronizeFS
subroutine when the synchronization timeout is over.

 25

This subroutine returns in the bpvTimeoutReached TRUE if the
synchronisation was performed, else FALSE is returned.

Example: “file_sync.tig”

 26

What Must Be Done

1. Some subroutines are too slow. The execution speed must be
increased by means of improved algorithms or built-in
functions written in the processor language directly.

2. ECC correction process for SmartMedia is not implemented at

the moment.

3. Although long file names are supported, it’s not possible to
differentiate files with identical first 6 characters.

4. The information about errors is very scanty. The error

messages must be extended. Probably, something like the
GetLastError subroutine will be implemented.

5. The subroutines were tested with 8Mb, 32Mb, 64Mb SmartMedia

cards. Additional tests would be useful.

6. It is conceivable to use the BTFS with other kinds of storage
media, not only with SmartMedia card. For example, one can
implement the hardware support layer for the Basic Tiger
internal user flash.

7. The BTFS subroutines are not re-entrant. It can be important

to find a way to make the BTFS subroutines re-entrant without
compromising the efficiency.

8. More comments in the programs and better documentation is

everyone’s most fervent wish.☺

 27

Useful References

1. SmartMedia Card Specifications:

http://www.ssfdc.or.jp/english/index.htm

2. About FAT:

http://averstak.tripod.com/fatdox/00dindex.htm

http://msdn.microsoft.com/

