

1 www.wilke.de - 02405/ 40855 - 0

SER2 – serial interfaces through software

SER2
serial interfaces through

software

2 www.wilke.de - 02405/ 40855 - 0

SER2 – serial interfaces through software

Blank Page

3 www.wilke.de - 02405/ 40855 - 0

SER2 – serial interfaces through software

Index
Index 3

SER2 - Serial interfaces through software 4

User-Function-Codes of the SER2_pp_xx.TDD 9

Documentation History 14

4 www.wilke.de - 02405/ 40855 - 0

SER2 – serial interfaces through software

SER2 - Serial interfaces through software

This device driver enables an asynchronous serial input and output on internal
I/O-pins. The interface has been implemented purely in the software. When installing
the driver the file name determines at which pins the serial input and output takes
place. The baud rate is determined by the TIMERA setting as well as the prescaler of
the device driver.

The driver can be set to individual requirements:

 RxD + TxD: activate/deactivate individual channels.
 RxD + TxD: each with 256 byte FiFo buffer.
 RxD + TxD: with flow control: RTS / CTS activate/deactivate.
 TxD: RS-485 bus access control TE activate/deactivate.
 Data-Bits: Data format: 1...8 Bits.
 Parity-Bit: No, Even, Odd, Mark, Space.
 Baud rates: quasi-infinitely variable baud rates via TIMERA and Prescaler in

the range from 12 kBd -send (with 1 x TxD) up to 3 Bd.
 Level: TRUE + INVERSE level possible for RS-232 with/without power driver.
 PINs: RxD, TxD, RTS, CTS and TE can be laid to almost any I/O-pin of the

Tiger.
 Channels: up to 8 serial channels (RxD / TxD in random mixture).

Note: SER2_XX.TDD puts much more strain on the CPU than a driver such as
SER1B_xx.TDD since several System-Task calls are carried out for every single bit. The
following should therefore be taken into account when using this driver:

 only use SER2 if no free CPU performance is available.
 do not select too high a total baud rate for all RxD and TxD channels:
 with current modules: sum total = max. approx. 10 kBaud.
 e.g.: 5 X TxD at 1200 Bd or: 1 X RxD + TxD at 4800 Bd.
 The Debug function can be impaired with a higher CPU work-load.

File name: SER2_pp.TDD

INSTALL DEVICE #D, "SER2_pp_xx.TDD", P1,...P7

Note: TIMERA.TDD must be integrated beforehand.

D is a constant, variable or expression of the data type BYTE,

WORD, LONG in the range 0...63 and stands for the device
number of the driver.

5 www.wilke.de - 02405/ 40855 - 0

SER2 – serial interfaces through software

pp in the file name stands for the position of the send pin
(Port, Pin). A table further below in the text shows the location of
the pins arising from the selection of the device driver.

xx determines the buffer size: R1 = 256 Bytes, K1 = 1 Kbyte, K4 =
4 Kbytes.

P1...P7 the following table shows the meaning of the parameters P1 to
P7:

 leave
unchanged

Description of the parameter

P1 0EEH is a parameter to determine the number of data bits.
Value: 1...8

P2 0EEH is a parameter to determine the parity:
0 = NO
1 = SPACE
2 = Even
3 = Odd
4 = MARK

P3 0EEH 0 = TRUE
1 = INVERS

P4 - Transmitter Prescaler
0 = no Transmitter present
1 = without Prescaler
2...255 = Prescaler Factor

P5 - Receive Oversample
0,1,2 = no Receiver present
3...255 = Oversample-Factor

P6 - Reserved, always 1.

P7 0EEH Hardware-Handshake Pins:
lower 3 Bits:
000 = no Handshake-Pins
001 = CTS-Pin (input, controls send activity)
010 = RTS-Pin (output, shows whether RxD has space in
the buffer)
011 = RTS+CTS
100 = Transmitter-Enable f. RS-485 (output, shows
whether data in TxD buffer)

6 www.wilke.de - 02405/ 40855 - 0

SER2 – serial interfaces through software

The device driver uses on to four I/O-pins which can be laid almost at random on
the internal I/O pins of the Tiger module. The following table shows which
assignments are possible by selecting the suitable driver file:

7 www.wilke.de - 02405/ 40855 - 0

SER2 – serial interfaces through software

Driver name TxD (out) RxD (in) CTS (in) or
TE (out)

RTS (out)

SER2_33_xx.TDD L33 L34 L35 L70

SER2_34_xx.TDD L34 L35 L70 L71

SER2_35_xx.TDD L35 L70 L71 L72

SER2_40_xx.TDD L40 L42 L33 L34

SER2_42_xx.TDD L42 L33 L34 L35

SER2_60_xx.TDD L60 L61 L62 L63

SER2_61_xx.TDD L61 L62 L63 L64

SER2_62_xx.TDD L62 L63 L64 L65

SER2_63_xx.TDD L63 L64 L65 L66

SER2_64_xx.TDD L64 L65 L66 L67

SER2_65_xx.TDD L65 L66 L67 L40

SER2_66_xx.TDD L66 L67 L40 L42

SER2_67_xx.TDD L67 L40 L42 L33

SER2_70_xx.TDD L70 L71 L72 L73

SER2_71_xx.TDD L71 L72 L73 L60

SER2_72_xx.TDD L72 L73 L60 L61

SER2_73_xx.TDD L73 L60 L61 L62

SER2_80_xx.TDD L80 L81 L82 L83

SER2_81_xx.TDD L81 L82 L83 L84

SER2_82_xx.TDD L82 L83 L84 L85

SER2_83_xx.TDD L83 L84 L85 L86

SER2_84_xx.TDD L84 L85 L86 L87

SER2_85_xx.TDD L85 L86 L87 L70

SER2_86_xx.TDD L86 L87 L70 L71

SER2_87_xx.TDD L87 L70 L71 L72

SER2_74_xx.TD2 L74 L75 L76 L77

SER2_356_xx.TD2 L35 L36 L37 L80

SER2_36_xx.TD2 L36 L37 L80 L81

SER2_37_xx.TD2 L37 L80 L81 L82

SER2_9592_xx.TD2 L95 L92 L40 L42

SER2_7236_xx.TDD L72 L73 L36 L37

8 www.wilke.de - 02405/ 40855 - 0

SER2 – serial interfaces through software

Both incoming and sent data will be buffered in individual buffers with a size
depending on the driver version used:

Driver name Size of buffers

SER2_xx_R1.TDD 256 bytes

SER2_xx_K1.TDD 1024 bytes

SER2_xx_K4.TDD 4096 bytes

Size, level or remaining space of the input and output buffer as well as the driver
version can be inquired with the User-Function codes.

9 www.wilke.de - 02405/ 40855 - 0

SER2 – serial interfaces through software

User-Function-Codes of the SER2_pp_xx.TDD

User-Function-Codes for inquiries (instruction GET):

No Symbol
Prefix UFCI_

Description

1 UFCI_IBU_FILL No. of bytes in input buffer (Byte)

2 UFCI_IBU_FREE Free space in input buffer (Byte)

3 UFCI_IBU_VOL Size of input buffer (Byte)

33 UFCI_OBU_FILL Number of bytes in output buffer (Byte)

34 UFCI_OBU_FREE Free space in output buffer (Byte)

35 UFCI_OBU_VOL Size of output buffer (Byte)

65 UFCI_LAST_ERRC Last error code

99 UFCI_DEV_VERS Driver version

If there is not enough space in the output buffer and you nevertheless wish to
output the instruction PUT or Print (and thus the complete task) waits until space
once again becomes free in the buffer.

Example: inquire the level of the output buffer to determine whether there is
enough space for the output:

GET #2, #0, #UFCI_OBU_FILL, 0, wVarFill

IF wVarFill > (LEN(A$)+2) THEN ' A$ + CR + LF

 PRINT #2, #0, A$

ENDIF

10 www.wilke.de - 02405/ 40855 - 0

SER2 – serial interfaces through software

User-Function-Codes for the instruction PUT following command:

No Symbol
Prefix: UFCO_

Description

1 UFCO_IBU_ERASE Delete input buffer

33 UFCO_OBU_ERASE Delete output buffer

94 UFCO_SET_SERIAL set serial parameters

128 UFCO_SET_ISEP set limiter characters for instruction INPUT

129 UFCO_RES_ISEP delete limiter characters for INPUT

Example: set new parameter on serial channel. The parameters will be output in

the same way as in the INSTALL line, but only the first 5 parameters are used here:

' data,par,inv,TxPre,RxOvs

PUT #2,#0, #UFCO_SET_SERIAL, 8, 3, 1, 3, 3

COMMA and RETURN are regarded as separator characters by default for the

instruction INPUT. The separator characters can be changed using the User-Function-
Code UFCO_SET_ISEP. Before setting new characters the already set characters can
be deleted. The characters to be set or deleted are specified as code areas:

PUT #D, #C, UFCO_SET_ISEP, Startcode, Endcode, Startcode, Endcode

If you delete the standard separators without setting new ones an INPUT
instruction will only be terminated when the Input buffer is full.

Example: set new separator LINE-FEED for the instruction input on the serial channel 0:

PUT #2,#0, #UFCO_RES_ISEP, 0, 255 ' delete all separators

PUT #2,#0, #UFCO_SET_ISEP, 10, 10 ' set Line-Feed as separator

Example: set all control characters as well as characters as of 7Fh as separator

characters for the instruction input on the serial channel 0:

PUT #2, #0, #UFCO_RES_ISEP, 0, 255 ' delete all separators

 ' set new code area as separators

PUT #2, #0, #UFCO_SET_ISEP, 0, 31, 127, 255

!

11 www.wilke.de - 02405/ 40855 - 0

SER2 – serial interfaces through software

Example: delete comma as separator character for the instruction input on the
serial channel 0:

PUT #2, #0, #UFCO_RES_ISEP, 2ch, 2ch ' delete comma as separator

‘ oder

PUT #2, #0, #UFCO_RES_ISEP, ‘,,’ ' delete comma as separator

A further example:

PUT #1, #0, #UFCI_SET_ISEP, 'acXZ55'

' set as INPUT separators the following characters:

' a, b, c, X, Y, Z, 5

Example: produce echo on serial channel 0:

PUT #2, #0, #UFCO_SER_ECHO, YES

12 www.wilke.de - 02405/ 40855 - 0

SER2 – serial interfaces through software

The example program sends on pin L80 (TxD) and receives on pin L81 (RxD).
Connect both pins.

Program example:

'--

'Name: SER2.TIG

'sends characters, and diplays received characters

'connect pins L80 (TxD) and L81 (RxD)

'--

user_var_strict 'variables must be declared

#include DEFINE_A.INC 'general defines

#include UFUNC3.INC 'definitions of user function codes

TASK MAIN

 BYTE I

 STRING A$

'install LCD-driver (BASIC-Tiger)

 INSTALL DEVICE #lcd, "LCD1.TDD"

'install LCD-driver (TINY-Tiger)

'INSTALL DEVICE #1, "LCD1.TDD", 0, 0, 0, 0, 0, 0, 80h, 8

 INSTALL_DEVICE #TA, "TIMERA.TDD",2,173 '3612Hz for 1200baud

 INSTALL_DEVICE #SER2,"SER2_80.TDD", &

 8, & 'data bits

 0, & 'parity 0=none

 0, & 'invert 0=true, 1=invers

 3, & 'tx prescaler

 3, & 'rx oversample

 1, & 'reserved, always 1

 0 'handshake, 0=none

 PUT #SER2, "hello world<13><10>" 'output with PUT

 PRINT #SER2, "again hello world" 'output with PRINT

 FOR I = 0 TO 0 STEP 0

 GET #SER2, 1, A$ 'read received characters

 PRINT #LCD, A$; 'show on LCD

 NEXT

END

13 www.wilke.de - 02405/ 40855 - 0

SER2 – serial interfaces through software

The following example is useful for experiments since individual characters are
sent and received characters shown at the press of a key.

Program example:

'--

'Name: SER2A.TIG

'reads keyboard of Plug & Play Lab

'sends the chars on SER2, and displays chars

'received from SER2 on the LCD

'connect pins L80 (TxD) and L81 (RxD)

'--

user_var_strict 'variables must be declared

#include DEFINE_A.INC 'general defines

#include UFUNC3.INC 'definitions of user function codes

#include KEYB_PP.INC 'for keyboard of Plug & Play Lab

TASK MAIN

 BYTE ever

 STRING key$, s$ 'key and serial character

'install LCD-driver (BASIC-Tiger)

 INSTALL DEVICE #LCD, "LCD1.TDD"

'install LCD-driver (TINY-Tiger)

'INSTALL DEVICE #LCD, "LCD1.TDD", 0, 0, 0, 0, 0, 0, 80h, 8

 install_device #TA, "TIMERA.TDD",2,173 '3612Hz for 1200baud

 INSTALL_DEVICE #SER2,"SER2_80.TDD", &

 8, & 'data bits

 0, & 'parity 0=none

 0, & 'invert 0=true, 1=invers

 3, & 'tx prescaler

 3, & 'rx oversample

 1, & 'reserved, always 1

 0 'handshake, 0=none

 call init_keyb (LCD) 'init keyboard driver

 for ever = 0 to 0 step 0 'endless loop

 get #SER2, 1, s$ 'read received characters

 if s$ <> "" then 'if serial char there

 print #LCD, asc(s$); 'show on LCD as ASCII code

 endif

 get #LCD, 1, key$ 'read keyboard

 if key$ <> "" then 'if key there

 put #SER2, key$ 'send on soft serial port

 endif

 wait_duration 50 'loop speed

 next

END

14 www.wilke.de - 02405/ 40855 - 0

SER2 – serial interfaces through software

Documentation History

Version of
Documentation

Version of SER2 Description / Changes

001 1.00k - first version

002 1.00k - SER2_9592

003 1.00k - SER2_7236_xx.TDD

004 1.00k - Some corrections, buffer size table added

005 1.00k - Telephone number changed

	Index
	SER2 - Serial interfaces through software
	User-Function-Codes of the SER2_pp_xx.TDD

	Documentation History

